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Abstract

While traditional data management typically answers questions like “What
were the expenses of my company this quarter?”, the underlying data can
be used to answer more powerful questions like “What expenses should
my company have this quarter (given the business requirements)?”. These
questions can generally be modeled as “Reverse” Data Management (RDM)
problems that ask: “What optimal interventions on data produce a desired
property in the output?” Several problems from this family have been studied
and used to solve challenges in domains as diverse as query explainability,
data debugging, knowledge representation, and effective SQL pedagogy.
However, these variants, their complexity, and practical algorithms had
always been studied in isolation- hence prior solutions do not generalize to
slightly different problems and settings, and many questions in this space
remain unsolved.

This dissertation proposes a novel paradigm for databases to compute the an-
swers to such Reverse Questions: instead of creating specialized algorithms for
easy (PTIME) and hard cases (NP-Complete), we can devise unified algorithms
that can solve all problem instances and are guaranteed to terminate in PTIME
for easy cases. This approach allows us to separate the task of designing
efficient algorithms from the task of proving tractability. An ultimate goal
would be to design instance optimal algorithms to execute Reverse Queries,
however developing such algorithms is an open, challenging question for
many problems across computer science with few known positive answers.
Instead, in an effort to bridge this gap, we develop algorithms that are coarse-
grained instance optimal i.e. they are guaranteed to run in polynomial time
for all known tractable classes of instances, however they are coarse-grained
instead of fine-grained i. e. they do not make guarantees on the precise
running time, but provide guarantees based on if the optimal running time
is known to be PTIME or not.

The proposed approach leads to both practical benefits in terms of instance-
based time guarantees and ease of implementation, as well as new theoretical
complexity results. We show that the proposed approach can be used to solve
a wide range of Reverse Data Management problems, including problems
well-known in databases such as Resilience, Causal Responsibility, and many
variants of Deletion Propagation. We also show that ideas of unified algorithms
are applicable and useful for problems that are not traditionally considered
as Reverse Data Management problems (but are closely related in the spirit
of modifying query output representations), such as the problem of finding
the Minimum Factorization of Provenance Expressions.

A complementary contribution of this work is an “Automatic Hardness
Gadget”-finder. Showing that a problem is NP-Hard is a fundamental task
in theoretical computer science (and database theory), and many problems
are known to be NP-Hard, but the proofs are often tedious and not easy to
find or generalize. We build a tool that leverages a semantic specification of
NP-Hardness to computationally build hardness proofs and hence resolve
open theoretical complexity questions.
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Introduction 1
1.1 Thesis Statement . . . . . 1
1.2 Unified Algorithms

(Coarse-Grained Instance
Optimal Algorithms) for
Reverse Query Optimiza-
tion . . . . . . . . . . . . . . 2

1.3 Outline and Contributions 4

A core research area in databases is query optimization, which focuses
on finding efficient ways to execute queries over a database. Traditional
queries run over an input database (or a source database) and return a
result table (or an output table). However, in a modern analytical setting,
we may want to ask questions that go beyond traditional queries, such
as “What changes (or interventions) to the source database would lead
to a certain change in the output table?”. These questions are widely
known as Reverse Data Management (RDM) problems [118]

[118]: Meliou, Gatterbauer, and Suciu
(PVLDB, 2011), ‘Reverse Data Management’.
doi:10.14778/3402755.3402803

. They are
useful in many applications, such as intervention-based approaches for
explanations [72, 119, 142]

[72]: Glavic, Meliou, and Roy (Founda-
tions and Trends in Databases, 2021),
‘Trends in explanations: Understanding
and debugging data-driven systems’.
doi:10.1561/9781680838817

[119]: Meliou and Suciu (SIGMOD, 2012),
‘Tiresias: the database oracle for how-to
queries’. doi:10.1145/2213836.2213875
[142]: Roy and Suciu (SIGMOD, 2014),
‘A Formal Approach to Finding Ex-
planations for Database Queries’.
doi:10.1145/2588555.2588578

, fairness [28, 62, 143]

[28]: Chen, Manolios, and Riedewald (PVLDB,
2023), ‘Why Not Yet: Fixing a Top-k
Ranking that is Not Fair to Individuals’.
doi:10.14778/3598581.3598606

[62]: Galhotra, Brun, and Meliou (FSE, 2017),
‘Fairness testing: testing software for discrimi-
nation’. doi:10.1145/3106237.3106277
[143]: Salimi, Rodriguez, Howe, and Su-
ciu (SIGMOD, 2019), ‘Interventional fairness:
Causal database repair for algorithmic fair-
ness’. doi:10.1145/3299869.3319901

, causal inference [63]

[63]: Galhotra, Gilad, Roy, and Salimi (SIG-
MOD, 2022), ‘HypeR: Hypothetical Rea-
soning With What-If and How-To Queries
Using a Probabilistic Causal Approach’.
doi:10.1145/3514221.3526149

,
and data repair [158]

[158]: Wang, Meliou, and Wu (SIGMOD, 2017),
‘QFix: Diagnosing errors through query histo-
ries’. doi:10.1145/3035918.3035925

.

The focus of this dissertation is to develop a unified and generaliz-
able Reverse Query Optimization paradigm, and to provide theoretical
guarantees for the performance of the proposed methods.

1.1 Thesis Statement
Thesis

My thesis is that it is possible to solve Reverse Data Management
problems with a novel paradigm:
▶ instead of creating dedicated algorithms for easy (PTIME) and hard
cases (NP-Complete), we can devise unified algorithms that can solve
all problem instances and terminate in PTIME for all currently-known
easy cases.
This approach allows us to separate the task of designing efficient
algorithms from the task of proving tractability, allowing us to solve
problems in a “coarse-grained instance optimal” manner i. e., it is
possible to solve all known tractable cases in polynomial time, without
needing to know in advance which cases are tractable.

Dissertation Goals. The methods developed in this dissertation focus
on theoretical guarantees as well as practical considerations. In partic-
ular, to develop efficient methods that support solving Reverse Query
Optimization problems in practice, we aim to develop:

▶ Generalized Algorithms: We would like the algorithms developed
for RDM problems to be general to the type of input: queries with
and without self-joins, unions; data with and without functional
dependencies; and different semantics (set, bag). In addition, we
would like the algorithms to be applicable to a class of problems,
rather than a single problem- thus leading to the formulation of
Generalized Deletion Propagation, which encapsulates many variants
of deletion propagation (a family of RDM problems that has been
studied since the 1980s) as special cases.

▶ Theoretical Guarantees: We would also like the algorithms to be
adaptive in performance for different inputs, and to be guaranteed
to terminate in polynomial time for all currently known tractable
cases.

1

https://doi.org/10.14778/3402755.3402803
https://doi.org/10.1561/9781680838817
https://doi.org/10.1145/2213836.2213875
https://doi.org/10.1145/2588555.2588578
https://doi.org/10.14778/3598581.3598606
https://doi.org/10.1145/3106237.3106277
https://doi.org/10.1145/3299869.3319901
https://doi.org/10.1145/3514221.3526149
https://doi.org/10.1145/3035918.3035925


1 Introduction

[59]: Freire, Gatterbauer, Immerman,
and Meliou (PVLDB, 2015), ‘The Com-
plexity of Resilience and Responsibility
for Self-Join-Free Conjunctive Queries’.
doi:10.14778/2850583.2850592

[117]: Meliou, Gatterbauer, Moore, and
Suciu (PVLDB, 2010), ‘The Complex-
ity of Causality and Responsibility
for Query Answers and non-Answers’.
doi:10.14778/1880172.1880176

[23]: Buneman, Khanna, and Tan (PODS,
2002), ‘On Propagation of Deletions
and Annotations Through Views’.
doi:10.1145/543613.543633

[102]: Kimelfeld, Vondrák, and Williams
(TODS, 2012), ‘Maximizing Conjunc-
tive Views in Deletion Propagation’.
doi:10.1145/2389241.2389243

[94]: Hu, Sun, Patwa, Panigrahi, and Roy
(PVLDB, 2020), ‘Aggregated Deletion Propaga-
tion for Counting Conjunctive Query Answers’.
doi:10.14778/3425879.3425892

[121]: Miao, Roy, and Yang (SIGMOD, 2019),
‘Explaining Wrong Queries Using Small Exam-
ples’. doi:10.1145/3299869.3319866

[110]: Makhĳa and Gatterbauer (SIGMOD,
2023), ‘A Unified Approach for Resilience
and Causal Responsibility with Integer Lin-
ear Programming (ILP) and LP Relaxations’.
doi:10.1145/3626715

[111]: Makhĳa and Gatterbauer (PODS,
2024), ‘Minimally Factorizing the Prove-
nance of Self-join Free Conjunctive Queries’.
doi:10.1145/3651605

[112]: Makhĳa and Gatterbauer (PVLDB, 2025),
‘Is Integer Linear Programming All You Need
for Deletion Propagation? A Unified and Prac-
tical Approach for Generalized Deletion Prop-
agation’. doi:10.14778/3742728.3742756

▶ Efficient in Practice: We run experiments to show that our al-
gorithms are efficient in practice, and compare them to existing
specialized algorithms. For variants of the problem that have been
studied only theoretically so far, we show the first experimental
results.

The goals can be achieved by developing a new philosophy of algorithm
design, which we call unified algorithms or coarse-grained instance optimal
algorithms (for different data management problems) i. e. algorithms that
are guaranteed to terminate in polynomial time for all currently known
tractable cases. We introduce this notion abstractly in the next section
Section 1.2, and then describe specific constructions for the problems we
study in this dissertation in Chapters 4 to 7.

Problems in Focus in this Dissertation. We prove the above thesis by
developing a unified algorithmic framework for some key Reverse Data
Management problems. The first problem we focus on is Resilience [59], a
well-known database problem that can be seen as the “simplest” RDM
problem. We then extend this framework to Causal Responsibility [117],
which is a more complex RDM problem that captures the notion of
counterfactual causality in databases. Finally, instead of looking at a
single RDM problem at a time, we define a new family of RDM problems
called Generalized Deletion Propagation (GDP), which captures many
well-known RDM problems such as resilience [59], deletion propagation
with source side effects [23] and view side effects [102], aggregated deletion
propagation [94], and the smallest witness problem [121].

Interestingly, the methods we develop are not restricted to traditional
RDM problems, but can also be adapted to other questions in databases,
such as provenance factorization, which that looks for a minimum-sized
formula representation of the provenance of a query result. Although
this is not a traditional RDM problem, it can be seen as RDM of a different
kind, where the intervention is not on the source database, but rather on
the query plan used to compute the query result provenance.

1.2 Unified Algorithms (Coarse-Grained
Instance Optimal Algorithms) for Reverse
Query Optimization

This dissertation and accompanying research [110–112] introduces a
new philosophy of algorithm design in the form of coarse-grained instance
optimal algorithms. The term coarse-grained refers to the fact this complexity
measure only distinguishes between tractable and NPC cases (which
we can refer to as intractable cases, assuming P! = NP), and does not
care about the precise fine-grained time complexity of the algorithm (for
different data management problems) i. e. algorithms that are guaranteed
to terminate in polynomial time for all currently known tractable cases.
The motivation behind such algorithms is to automatically leverage
regularities in the data without explicitly receiving them as input. The
use of such unified or coarse-grained instance optimal algorithms allows
a major simplification of algorithm design and implementation, while
maintaining strong theoretical guarantees. We have shown unified al-
gorithms that can solve all known polynomial time solvable cases in
polynomial time for different data management problems that prior to
my work had independent, case-specific specialized algorithms. These
unified algorithms have been tested empirically as well, and we observed
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that, surprisingly, they often outperform specialized algorithms that have
been designed for specific problems and query classes.

We have shown unified algorithms that can recover all known tractable
cases for well-known data management problems like resilience [110],
causal responsibility [110], deletion propagation (with its many vari-
ants) [112], and provenance factorization [111]. The challenges posed by
each of these problems are described in subsequent chapters, but this
section focuses on the problem-agnostic contribution of unified algorithms.
These algorithms are guaranteed to terminate in polynomial time for all
known tractable cases. By “tractable cases” we mean classes of instances
for which we know that the problem can be solved in polynomial time in
data complexity, usually with specific specialized algorithms that have
been discovered with prior work. These “tractable cases” are typically
defined by the query i.e. a query forms a tractable case if a problem can
be solved in polynomial time over any database over the given query. But
our tractability criteria are not restricted to queries, and can be defined
by properties of the database as well – such as the presence of functional
dependencies. The unified algorithms we have developed are guaranteed
to terminate in polynomial time in the presence of these tractability
properties, even without specifying them in advance. For example, func-
tional dependencies are automatically leveraged, without needing to
be explicitly discovered in advance. Our current unified algorithms use
Integer Linear Programming (ILP) as a common framework to express the
problem, and then use the combined properties of ILP and the problem
characteristics to prove that for all tractable cases, an optimal solution
of the Linear Programming (LP) relaxation1

1: LP Relaxations arise by removing in-
tegrality constraints from variables in an
ILP (thus variables are allowed to take a
range of fractional values)

is integral as well. We have
observed that for ILPs that enjoy this property, modern ILP solvers are
able to solve them efficiently without knowing in advance that these are
tractable problems.

But creating a unified algorithm is not as simple as expressing the
problem as an ILP. There are two main challenges: (1) finding a right
ILP that enjoys the tractability properties we desire, and (2) proving
that the ILP is indeed tractable for all known tractable cases. Picking
a right ILP is important, as there can be many ILPs that express the
same problem and hence have the same solution, but have completely
different solutions to their Linear Programming relaxations, making a
big difference in the performance of the algorithm [112]. We show some
insight via example of a principled way to come up with the right ILP
for a problem for a particular problem, by using techniques reminiscent
of the cutting-plane algorithm [98] to “cut away fractional solutions”,
which we believe can be generalized to other problems as well. This
leaves us with the challenge of proving that the ILP is tractable for all
known tractable cases – a question that is also of great interest to linear
optimization researchers, and practitioners across domains. We found
that for the problems we studied, existing tractability criteria for ILPs
(like Total Unimodularity and Balanced Matrices) were not sufficient
to prove our results; we had to come up with new criteria that were
specific to the problem at hand, creating case-specific reductions to min
cut problems in flow graphs. Thus while the proofs underlying our
unified algorithms are complex, the algorithms themselves are simple
and easy to implement, and simply work without prior knowledge of the
tractability properties of the problem.
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1.3 Outline and Contributions

Figure 1.1 shows the outline of this dissertation, along with a brief
overview of the contributions in context of past work and future research.
Chapter 2 provides the necessary background on Reverse Data Man-
agement problems, focusing on the specific problems we study in this
dissertation. It also discusses additional related work and themes, such
as instance optimal algorithms, intervention-based explanations, and the
use of Integer Linear Programming (ILP) in databases. Chapter 3 intro-
duces the necessary notation and definitions used in this dissertation,
including standard database notation. Chapters 4 to 8 form the core of this
dissertation, and the key contributions and outline is summarized below.
Finally, Chapter 9 summarizes the contributions of this dissertation and
discusses open conjectures and future research directions.

1.3.1 Resilience (Chapter 4)

Arguably, the simplest formulation of such RDM problems is “resilience”:
What is the minimal number of tuples to delete from a database in
order to eliminate all query answers? It was introduced by Freire et
al. in 2015 [59], and the same work also showed a dichotomy of the
complexity for resilience for self-join-free queries under set semantics.
While a dichotomy for the general self-join case remains open, Freire et
al. [60] gave partial complexity results in this space, and conjectured a
sufficient and necessary condition for hardness of resilience. We proved
this conjecture for self-join-free queries (with a slight deviation of the
original specification) [110], and proved that the condition in question
is a sufficient condition for hardness in queries with self-joins as well.
We also show that resilience is easy under bag semantics if and only if
the query is linear [110] - thus obtaining a dichotomy for the self-join-free
case under bag semantics. Interestingly, we show that switching from
set semantics to bag semantics only changes the objective function of
the ILP, and the constraint matrix remains the same, however this leads
to a different tractability characterization. This tractability difference
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is automatically captured by our unified algorithm, without needing to
know in advance that the query is tractable or the semantics used.

1.3.2 Causal Responsibility (Chapter 5)

The notion of causal responsibility is due to foundational work by
Halpern, Pearl, et al. [86] which defined causal responsibility based on
minimal interventions in the causal graph. Meliou et al. [117] adapted this
concept to define causal responsibility for database queries and showed
a dichotomy under set semantics for self-join-free queries. Our work
proves a dichotomy under bag semantics, as well as more fine-grained
result based on the relation of the tuple we find responsibility of [110].
The unified algorithm we developed for causal responsibility differs from
the others in a key aspect - the LP relaxation of the unified ILP is not tight
for all tractable cases. However, a certain Mixed ILP (MILP) relaxation of
the ILP is tight for all tractable cases, and we show that this MILP can
be solved in PTIME as well. Thus, we still do obtain a unified algorithm
that is guaranteed to recover all known PTIME cases by terminating in
PTIME. We show that popular ILP solvers like Gurobi do indeed show
polynomial time behavior for these ILPs (with a tight tractable MILP),
and thus our unified algorithm is practical as well.

1.3.3 Generalized Deletion Propagation (Chapter 6)

A contribution of this dissertation is to define Generalized Deletion Prop-
agation (GDP), a new RDM problem that encapsulates many variants
of deletion propagation (including resilience studied in Chapter 4) and
introduces new, natural variants. Deletion propagation are well-studied
problem in databases, where the goal is to find the minimal set of tuples
to delete from a source database such that a query result is changed in
a desired way. We can think of deletion propagation as a special case
of Reverse Data Management, where the only interventions that are
allowed are deletions. The GDP problem was born out of a desire to unify
the many variants of deletion propagation that have been studied in
isolation [23, 60, 93, 94, 102], and answer some very natural data analysis
questions that have not been studied before. We show a principled way to
create a unified algorithm for GDP as well, that is guaranteed to terminate
in polynomial time for all known tractable cases and show experimental
results that demonstrate the effectiveness of our approach. Although we
use a similar ILP formulation setup for GDP as for resilience, we show an
example of a problem for which “naive” ILP constructions do not have
the desired tractability properties, and we had to come up with a new
smoothened ILP formulation that did. This smoothened ILP uses insights
like the use of a “wildcard” semantics and cutting plane like techniques,
and leads to 2-3 orders of magnitude speedup in practice over the naive
ILP formulation.

1.3.4 Minimum Factorization of Provenance Formulas
(Chapter 7)

At the heart of many RDM problems is the notion of provenance, which
captures the origin or derivation of a query result. Provenance is a
useful notion in explainable data management, and can be thought of
as Boolean formula that captures the origin or derivation of a query
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result. A fundamental question is: given a provenance formula, how can
we succinctly represent it? At first glance, this question is very different
from other RDM problems covered by this dissertation, however we
see that a lot of the techniques used to develop RDM problems can
be adapted to this problem as well. In fact, the problem can be seen
as an extension of the RDM framework, where the query output is a
provenance representation (instead of an output relation) and we perform
interventions on the query plans used to create the output in order to
create the smallest sized provenance representation.

If we think of provenance as an arbitrary Boolean formula given in
DNF, then the problem of finding the smallest equivalent formula is
equivalent to the intractable Σ𝑝

2 -complete problem of Minimal Equivalent
Expression [155]. However, when we take into account the structure
that is inherent in provenance formulas, we show [111] that for all
provenance formulas of self-join-free queries, not only is the problem in
NP, but also there is a large class of queries for which we can provide
a polynomial time algorithm to find the smallest equivalent formula.
Moreover, such an algorithm is a unified algorithm as discussed in
previous subsections, thus it can automatically detect and recover the
tractable cases. Our work lies on the bedrock of formalizing a connection
between factorizations, variable elimination orders and minimal query
plans as used in the context of probabilistic databases. This work is
not only a step in understanding a very fundamental question about
tractability of Boolean formula factorization, but we show experimentally
that it leads to better probabilistic inference approximations as well.

1.3.5 Automatic Hardness Gadget-finder for Resilience
problems (Chapter 8)

A symmetric problem to developing unified algorithms for RDM prob-
lems is to prove the complexity class for these problems. For problems
that are known to be NP-Hard, it is believed that no polynomial time
algorithm exists to solve them. Thus, when we encounter a problem for
which we cannot show that our unified algorithm terminates in poly-
nomial time, we would like to show that the problem is NP-Hard (and
thus the problem cannot be solved in polynomial time unless P = NP). A
typical approach to proving hardness results for a problem is to reduce
from a known NP-Hard problem. These reductions are often done by
hand, and require a deep understanding of the problem at hand. For
the earlier discussed problem of resilience, hardness results for different
queries are often different from one another, and complex in their own
ways. Since this process is complex, the general tractability is open and
hardness results for many queries are unknown, and it is not clear how
to obtain them. Instead of doing these reductions by hand, we show [110]
that we can automatically generate hardness reductions for a wide range
of queries, by leveraging the structure of the query and the database. In
our method, we identified and declaratively specified a set of sufficient
properties that a hardness reduction must satisfy, and then used a Dis-
junctive Logic Programming (DLP) solver to automatically generate the
reductions that satisfied these declaratively specified semantic hardness
properties. We were able to generate hardness reductions for 5 out of 8
queries for which hardness results were previously unknown (2 of these
queries were independently shown to be tractable later).
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We begin by a brief review of work in Reverse Data Management (RDM)
and discuss problems that are the focus of this dissertation - resilience,
causal responsibility, and deletion propagation variants, and minimal
factorization of provenance formulas. This section only gives a brief
overview of the problems in focus, with the formal definitions and details
are given in the respective chapters. In Section 2.2 we discuss related
work on some broader themes that are closely tied to this dissertation,
such as explanations, fairness, and linear optimization. Related work
that is more specifically tied to one chapter is discussed in the respective
chapters (such as related work on factorization in Chapter 7 or automatic
hardness proofs in Chapter 8).

2.1 Problems in Focus in this Dissertation

Reverse Data Management (RDM). The term Reverse Data Management
(RDM) [118] was proposed in 2011, but examples of reverse data man-
agement problems have been studied in databases since the 1980s [44].
In these problems one wants to achieve a certain effect in the output
data, and needs to act on the input (source) data in order to achieve that
effect.

Definition 2.1.1 (Reverse Data Management (RDM)) Given a source
database D and a query 𝑄, a desired output property 𝑃, and an optional
objective function 𝑓 (𝑄, 𝐷, Γ), an RDM problem is to find a set of interventions
Γ on D that produce a new database 𝐷′ such that 𝑄(𝐷′) satisfies 𝑃 and
𝑓 (𝑄, 𝐷, Γ) is optimized.

RDM problems are useful in many applications, such as intervention-
based approaches for explanations [72, 91, 142, 161], fairness [62, 143],
causal inference [63], and data repair [158]. The Tiresias system [119]
solves how-to problems, a type of reverse data management problem,
using Mixed Integer Linear Programming (MILP). However, its focus is
on building the semantics of a query language for how-to problems that
can be translated to an MILP, unlike this dissertation, which focuses on
building a unified method that can recover tractable cases.

Deletion Propagation (DP) and View-Update. A particular class of RDM
problems that we focus on this dissertation are Deletion Propagation
problems. Intuitively, one can think of deletion propagation as RDM
problems where the only interventions permitted are deletion. The
problem of deletion propagation seeks to delete a set of tuples in the input
tables in order to delete a particular tuple from the view. Intuitively,
this deletion should be achieved with minimal side effects, where side
effects were initially commonly defined with either of two objectives: (a)
deletion propagation with source side effects seeks a minimum set of input
tuples Γ in order to delete a given output tuple; whereas (b) deletion
propagation with view side effects seeks a set of input tuples that results
in a minimum number of output tuple deletions in the view, other than
the tuple of interest [23]. The resilience problem [59, 60] is a variant of
the deletion propagation problem with source-side effects focusing on
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Boolean queries. It can be considered the simplest RDM problem, and we
discuss it in detail in Chapter 4. There are several variants to resilience
such as destroying a pre-specified fraction of witnesses from the database
instead of all witnesses [94]. We introduce a more general problem
formulation in Chapter 6 that captures all prior deletion propagation
variants as a special case.

Causal Responsibility. Foundational work by Halpern, Pearl, et al. [31, 86,
87] defined the concept of causal responsibility based minimal interventions
in the input. Meliou et al. [117] adapted this concept to define causal
responsibility for database queries and proposed a flow algorithm to
solve the tractable cases. The problem is closely related to resilience, and
can be thought of as finding resilience for a specific tuple, with some
additional constraints (that relate to making the tuple counterfactual).
Their tractable cases are closely related as well - In fact in Chapter 5, we
show that under bag semantics, resilience is intractable for a self-join-free
query iff causal responsibility is intractable for that query.

Factorization of boolean Provenance formulas. Implicit in solving RDM
problems is a notion of provenance, that captures how the output is
produced from the input. Provenance is represented as a boolean formula
under the semiring framework [78]. A natural question is about how
this provenance can be succinctly represented i. e. what is the size of
the smallest Boolean formula that captures the provenance of a given
database under a query? Surprisingly, much of ideas we used to solve
RDM problems can apply in this setting (although resulting in far more
complicated proofs). Interestingly, even the complexity characterization
of this problem and that of resilience have some connections, and we
discuss these in Chapter 7.

2.2 Related Work and Themes

Explanations and fairness in Data Management. Data management
research has recognized the need to derive explanations for query results
and surprising observations [72]. Existing work on explanations uses
many approaches[108]. This includes the approach of modifying the
input (i.e. performing interventions) [91, 95, 116, 117, 142, 161], which is our
focus as well. Recent approaches show that explanations may benefit a
variety of applications, such as ensuring or testing fairness [62, 134, 143]
or finding bias [163]. We believe our unified algorithms that solve both
easy and hard cases with one algorithm will also find applications for
these applications.

Intervention-Based Explanations in AI. Formal Explainability in AI
(FXAI) [113] distinguishes between two types of explanations: Abductive
explanations (or locally sufficient reasons [12]) identify a minimal subset
of features that, when fixed to their original values, are sufficient to
guarantee the original prediction. They are also known as ‘Why?’ expla-
nations as they explain why a prediction is the way it is. Contrastive
explanations identify a minimal subset of features that, when altered
from their original values, are sufficient to change the original prediction.
They are also known as ‘Why not?’ explanations as they explain why the
prediction is not different from what it is. These notions also extend to
relational query explanations, and we can interpret the Smallest Witness
Problem (SWP) [93, 121] as an instance of abductive explanation, and the
Resilience Problem (RES) [110] as a contrastive explanation. Generalized
Deletion Propagation (GDP) subsumes both SWP and RES and can give
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[54]: Fagin, Lotem, and Naor (PODS, 2001),
‘Optimal aggregation algorithms for middle-
ware’. doi:10.1145/375551.375567
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2016), ‘Joins via Geometric Resolutions: Worst
Case and Beyond’. doi:10.1145/2967101
[125]: Ngo, Nguyen, Re, and Rudra
(PODS, 2014), ‘Beyond worst-case
analysis for joins with minesweeper’.
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[4]: Abo Khamis, Ngo, and Suciu (PODS,
2017), ‘What Do Shannon-Type Inequali-
ties, Submodular Width, and Disjunctive
Datalog Have to Do with One Another?’
doi:10.1145/3034786.3056105

both abductive and contrastive explanations in the same framework. Notice
that ‘Why’ and ‘Why not’ explanations have been understood differently
in the context of database provenance [116, 117]: ‘Why’ has been used
to understand why a given tuple is in the output (a ‘prediction’ is true)
whereas ‘why not’ to understand why a tuple is not in the output (a
‘prediction’ is false).

Bag semantics. Real-world databases consist of bags instead of sets
i. e. tuples may be duplicated in the input and output relations. This
gap between database theory and database practice has been pointed
out years ago [27]. However, studying properties of CQs under bag
semantics is often considerably harder. For example, the connection
between local and global consistency has only been recently solved for
bags [11, 162], and the fundamental problems of query containment of CQs
under bag semantics remain open despite recent progress [99, 105]. This
dissertation and accompanying work gives the first dichotomy result for
any reverse data management problems under bag semantics (showing
dichotomies for self-join-free queries for the problems of resilience and
causal responsibility).

Instance Optimal Algorithms. Our notion of “coarse-grained instance
optimality” is inspired by the notion of instance optimality in complexity
theory [140]. Instance optimal algorithms are defined as those that for
every input perform better than every other correct algorithm (up to a
constant factor) [140]. Problem-specific requirements of a “any correct
algorithm” are used to define lower bounds for instance optimality. It
is a very strong notion of optimality, and is often not achievable in
practice. However, the need for instance optimality or beyond worst case
complexity analysis has been increasingly recognized since worst-case
complexity analysis can be overly pessimistic and fails to capture the
efficient real world performance of many algorithms such as in ILP
optimization and machine learning. Instance optimal algorithms have
also been sought for some problems in databases such as top-𝑘 score
aggregation [54], and join computation [3, 7, 100, 125].

Holistic Join Algorithms or Worst-Case Optimal Algorithms. Our
approach has an interesting conceptual connection to “holistic” join
algorithms [4] that rely on not just a single tree decomposition (thus
one query plan) but rather multiple tree decompositions (thus multiple
plans) for different output tuples. We see a similarity in our approach,
where we choose between a different intervention for each input tuple.
This parallel is most closely seen in the case of minimal factorization of
provenance formulas (Chapter 7), where we assign different query plans to
different witnesses.
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This chapter introduces notation and background that is used throughout
this dissertation. A summary of the notation is also given in the appendix
(Chapter A). Section 3.2 gives a brief overview of the provenance frame-
work as used in this dissertation. Section 3.3 gives important background
on linear programming, which is a key tool we use to model and solve
the problems in this dissertation. We discuss notions from polyhedral
theory that are instrumental for some results in this dissertation.

3.1 Standard Notations and Definitions

We write D for a database, i.e. the set of tuples in the relations.

A conjunctive query (CQ) is a first-order formula 𝑄(y) = ∃x (𝑔1 ∧ . . .∧ 𝑔𝑚)
where the variables x = (𝑥1 , . . . , 𝑥ℓ ) are called existential variables, y are
called the head or free variables, and each atom 𝑔𝑖 represents a relation
𝑔𝑖 = 𝑅 𝑗𝑖 (x𝑖) where x𝑖 ⊆ x ∪ y1

1: W.l.o.g., we assume that x𝑖 is a tu-
ple of only variables and don’t write the
constants. Selections can always be di-
rectly pushed into the database before
executing the query. In other words, for
any constant in the query, we can first
apply a selection on each relation and
then consider the modified query with
a column removed. In other words, for
any constant in the query, we can first
apply a selection on each relation and
then consider the modified query with a
column removed.

. W.l.o.g., we discuss only connected
queries (results for disconnected queries typically follow immediately by
factorizing each of the query components independently.)

A self-join-free (sj-free) CQ is one where no relation symbol occurs more
than once and thus every atom represents a different relation. Thus, for
sj-free CQs, one may refer to atoms and relations interchangeably.

A Boolean CQ is a CQ with no free variables, i.e. y = ∅. Notice that a
query has at least one output tuple iff the Boolean variant of the query
(obtained by making all the free variables existential) is true. We write
𝐷 |= 𝑄 to denote that that query 𝑄 evaluates to true over database
instance D, and 𝐷 ̸|= 𝑄 to denote it evaluates to false.

We write var(𝑋) for the set of variables occurring in atom/ relation/
query/ formula 𝑋 and at(𝑥) for the set of atoms that contain variable 𝑥.
We write [w/x] as a valuation (or substitution) of query variables x by
constants w. These substitutions may be written explicitly by “domain-
annotating” variables with domain constants as subscripts. Domain-
annotated tuples use such domain-annotated variables as subscripts, e.g.
𝑟𝑥1 ,𝑦2 represents a tuple of relation 𝑅(𝑥, 𝑦) with 𝑥 = 1 and 𝑦 = 2. We
sometimes informally omit the variables and use the notation 𝑟𝑣1𝑣2 ...𝑣𝑎

where 𝑣1𝑣2 . . . 𝑣𝑎 are the domain values of var(𝑅) in the order that they
appear in atom 𝑅. Thus, 𝑟12 also represents 𝑅(1, 2).

Queries are interpreted as hypergraphs with edges formed by atoms
and nodes by variables. Two hyperedges are connected if they share at
least one node. We use concepts like paths and reachable nodes on the
hypergraph of a query in the usual sense [18].

A witness w is a valuation of x that is permitted by D and that makes 𝑄
true (i.e. 𝐷 |= 𝑄[w/x]).‗ with w/x representing substitution of x by w.
The set of witnesses is then

witnesses(𝑄, 𝐷) = {w | 𝐷 |= 𝑄[w/x]} .
‗ Note that our notion of witness slightly differs from the one used in provenance literature
where a “witness” refers to a subset of the input database records that is sufficient to
ensure that a given output tuple appears in the result of a query [30].
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stract)’. doi:10.1145/800070.802186
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doi:10.1145/357775.357777

[78]: Green, Karvounarakis, and Tannen
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[79]: Green and Tannen (PODS, 2017),
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Since every witness implies exactly one set of up to 𝑚 tuples from D that
make the query true, we will slightly abuse the notation and also refer to
this set of tuples as “witnesses.” For example, consider the 2-chain query
𝑄∞2 :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧) over the database 𝐷 = {𝑟12: 𝑅(1, 2),𝑠23: 𝑆(2, 3),𝑠24:
𝑆(2, 4)}. Then the witnesses(𝑄∞2 , 𝐷) = {(1, 2, 3), (1, 2, 4)} and their re-
spective tuples (also henceforth referred to as witnesses) are {𝑟12 , 𝑠23},
and {𝑟12 , 𝑠24}. A set of witnesses may be represented as a connected
hypergraph (called the witness hypergraph), where tuples are the nodes
of the graph and each witness is a hyperedge around a set of tuples.

Computational Complexity Measure. Unless otherwise specified, all
complexity results in this dissertation are focused on the data complex-
ity [156] of RDM problems in question i. e. the complexity of the problem as
the size of the data D increases but the size of the query 𝑄 remains fixed.
We refer to RES(𝑄), RSP(𝑄), GDP(𝑄), FACT(𝑄) to discuss the complexity
of the problems of query 𝑄 over an arbitrary input instance.

3.2 Provenance Framework and Notation

The terms provenance and lineage are used in the literature with slightly
different meanings. While lineage was originally formalized in [37], we
follow the modern treatment of data provenance as denoting a proposition
formula that corresponds to the Boolean provenance semiring of Green
et al. [78, 79], which is the commutative semiring of positive Boolean
expressions (𝔹[𝑋],∨,∧, 0, 1). We sometimes write ∨ as semiring-plus
(⊕) and ∧ as times (⊗).

We assign to every tuple 𝑡 ∈ 𝐷 a provenance token, i.e. we interpret each
tuple as a Boolean variable. Then the provenance formula (equivalently,
provenance expression) 𝜑𝑝 of a query 𝑄 :−𝑅1(x1), . . . , 𝑅𝑚(x𝑚) on D is
the positive Boolean DNF formula

Prov(𝑄, 𝐷) =
∨

𝜃:𝐷|=𝑄[𝜃(x)/x]
𝑅1(𝜃(x1)) ∧ · · · ∧ 𝑅𝑚(𝜃(x𝑚))

where 𝐷 |= 𝑄[𝜃(x)/x] denotes that 𝜃(x) is a valuation or assignment
of x to constants in the active domain that make the query true over
database D. Notice that for sj-free queries, this DNF is always 𝑚-partite
as each disjunct contains one tuple from each of the 𝑚 tables and that
the notions of provenance polynomial and provenance formula are
interchangeable.

Read-once. For a formula 𝜑, we denote by var(𝜑) the set of variables
that occur in 𝜑, and by len(𝜑) its length, i.e., the number of its literals.†
A provenance is called read-once if it can be represented in read-once
form, i.e. there is an equivalent formula in which each literal appears
exactly once [74, 85, 127]. This is possible iff that equivalent formula
can be built up recursively from the provenance tokens by disjunction
(and conjunction), s.t. whenever 𝜑 = 𝜑1 ∨ 𝜑2 (or 𝜑 = 𝜑1 ∧ 𝜑2), then
var(𝜑1) ∩ var(𝜑2) = ∅.
Witnesses (Additional Provenance-based Formalism). We saw before
that a witness w a valuation of all variables x that is permitted by D and

† Notice that the length of a Boolean expression 𝜑 is also at times defined as the total
number of symbols (including operators and parentheses, e.g. in [35]). In our formulation,
we only care about the number of variable occurrences.
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𝑅 𝑥

𝑟1 1
𝑟2 2
𝑟3 3

𝑆 𝑥 𝑦

𝑠11 1 1
𝑠12 1 2
𝑠23 2 3
𝑠33 3 3
𝑠13 1 3

𝑇 𝑦

𝑡1 1
𝑡2 2
𝑡3 3

(a) Dwith and 𝐷′ without 𝑠13

𝑅 𝑆 𝑇

𝑟1

𝑟2

𝑟3

𝑡1

𝑡2

𝑡3

𝑠11

𝑠12

𝑠23

𝑠33

𝑠13

(b) Bipartite join graph

Figure 3.1: Example 3.2.1: (a):
Database instance with provenance
tokens to the left of each tuple,
e.g. 𝑠12 for 𝑆(1, 2). (b): Prov(𝑄★

2 , 𝐷)
for 𝑄★

2 :−𝑅(𝑥), 𝑆(𝑥, 𝑦), 𝑇(𝑦) repre-
sented as bipartite graph. Ddenotes
the database with the orange tuple
𝑠13 and 𝐷′ denotes the database
without it.

[1]: Aardal, Nemhauser, and Weismantel
(2005), Handbooks in Operations Research and
Management Science: Discrete Optimization.
doi:10.1016/s0927-0507(05)x1200-2

[144]: Schrĳver (1998), Theory of linear and integer
programming. doi:10.1137/1030065

that makes 𝑄 true (i.e. 𝐷 |= 𝑄[w/x]). Since every witness implies exactly
one set of ≤ 𝑚 tuples from D that make the query true, we also refer
to this set of tuples as a “witness.” We will also slightly abuse notation
and use “witness” to refer to a product term in a DNF of the provenance
polynomial.

Example 3.2.1 (Provenance) Consider the Boolean 2-star query 𝑄★
2

:− 𝑅(𝑥), 𝑆(𝑥, 𝑦), 𝑇(𝑦) over the database 𝐷′ in Figure 3.1 (ignore the
tuple 𝑠13 for now). Each tuple is annotated with a Boolean variable
(or provenance token) 𝑟1 , 𝑟2 , . . .. The provenance 𝜑𝑝 is the Boolean
expression about which tuples need to be present for 𝑄★

2 to be true:

𝜑𝑝 = 𝑟1𝑠11𝑡1 ∨ 𝑟1𝑠12𝑡2 ∨ 𝑟2𝑠23𝑡3 ∨ 𝑟3𝑠33𝑡3 (3.1)

This expression contains |var(𝜑𝑝)|= 10 variables, however has a length
of len(𝜑𝑝) = 12 because variables 𝑟1 and 𝑡3 are repeated 2 times each.
The witnesses are witnesses(𝑄★

2 , 𝐷
′) = {(1, 1), (1, 2), (2, 3), (3, 3)} and

their respective tuples are {𝑟1 , 𝑠11 , 𝑡1}, {𝑟1 , 𝑠12 , 𝑡2}, {𝑟2 , 𝑠23 , 𝑡3}, and
{𝑟3 , 𝑠33 , 𝑡3}.
The provenance can be re-factored into a read-once factorization 𝜑′

which is a factorized representation of the provenance polynomial in
which every variable occurs once, and thus len(𝜑′)|= |var(𝜑′)|= 10. It
can be found in PTIME in the size of the database [75] [75]: Golumbic, Mintz, and Rotics (JDAM,

2006), ‘Factoring and recognition of
read-once functions using cographs
and normality and the readability of
functions associated with partial k-trees’.
doi:10.1016/j.dam.2005.09.016

:

𝜑′ = 𝑟1(𝑠11𝑡1 ∨ 𝑠12𝑡2) ∨ (𝑟2𝑠23 ∨ 𝑟3𝑠33)𝑡3

3.3 Background on Linear Programming

We use Integer Linear Programs and their relaxations to model and solve
the problems in this dissertation. This section introduces the background
knowledge on linear programs, their complexity, and how they are used
in practice.

Linear Programs (LP). Linear Programs are standard optimization prob-
lems [1, 144] in which the objective function and the constraints are linear.
A standard form of an LP is min c⊺x s.t. Wx ≥ b, where x denotes the vari-
ables, the vector c⊺ denotes weights of the variables in the objective, the
matrix W denotes the weights of x for each constraint, and b denotes the
right-hand side of each constraint. If the variables are constrained to be
integers, the resulting program is called an Integer Linear Program (ILP),
while a program with some integral variables is referred to as a Mixed
Integer Linear Program (MILP). The LP relaxation of an ILP program is
obtained by removing the integrality constraint for all variables.
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Polyhedral Results in Linear Optimization. A linear program min{c⊺x |
Wx ≥ b} can also be viewed as the problem of minimizing a linear
function c⊺x over a polyhedron P defined by the inequalities Wx ≥ b
[144]. The polyhedron P is called the feasible region, and any vector in P a
feasible solution. The function c⊺x is called the objective function and can be
interpreted as a direction vector in the polyhedron. Any feasible solution
attaining the optimum objective value is called an optimum solution. A face
F of a polyhedron P is a set of optimum solutions of min{c⊺x|Wx ≥ b}
for some c ∈ ℝ𝑛 . For a given objective function c⊺x, we refer to the face of
P that contains all optimum solutions as the optimal face of P. An extreme
point or a vertex or corner point of a polyhedron P is a point in P that cannot
be expressed as a convex combination of other points in P. A polytope is
a bounded polyhedron. A polytope is an integer polytope if all its vertices
(or extreme points) have integer coordinates.

Complexity of solving LPs. The question of when an Integer Linear
Program (ILP) is tractable has many theoretical and practical conse-
quences [34]. Since we model our problem as an ILP, we can leverage
some known results for ILPs to evaluate the complexity of our problem.
Solving ILPs is NPC and part of Karp’s 21 problems [97], while LPs can be
solved in PTIME with Interior Point methods [32, 80]. The complexity of
MILPs is exponential in the number of integer variables. However, there
are conditions under which ILPs become tractable. In particular, if the
LP relaxation of an ILP creates an integer polytope, then the ILP can be
solved in PTIME. In particular, if there is an optimal integral assignment
to the LP relaxation, then the original ILP can be solved in PTIME as well.
This can be done by using crossover methods that can find an extreme
point solution from an interior point solution in PTIME [67, 115]. A lot
of work studies conditions under which Linear Programs have integer
polytopes [2, 34, 58, 106, 144]. A famous example is the max-flow min-cut
problem which can be solved with LP relaxations despite integrality con-
straints. The max-flow Integrality Theorem [144, Theorem 5.22] states that
a flow graph always has an integer max flow (or integral max-cut) [58],
for any integral capacities on the edges. This is a sufficient condition for
a set of inequalities to have total dual integrality (TDI) and Edmonds-Giles
showed that TDI systems always have integral polytopes [48]. There are
many other structural characteristics that define when the LP is guaran-
teed to have an integer polytope, and thus where ILPs are in PTIME. For
example, if the constraint matrix of an ILP is Totally Unimodular [144] then
the LP always has the same optima. Similarly, if the constraint matrix is
Balanced [33], several classes of ILPs are PTIME. We use the results of
Balanced Matrices to show that the resilience and responsibility of any
read-once data instances can be found in PTIME (Section 5.6). However,
for other PTIME cases, we have ILP constraint matrices that do not fit into
any previous structural tractability characterization. In such situations,
we are able to use existing results indirectly (by showing an intermediate
flow representation that accurately represents the ILP) to show that the
polytope defined by the ILP is an integer polytope, and thus the ILP can
be solved in PTIME.

We also notice that one need not enforce that the entire polytope is
integral to solve the ILP in PTIME. If we can show that for a given
objective function, the optimal face of the polytope has integer vertices,
then we can still apply the crossover methods to find an integral solution
in PTIME. We use this idea to show the tractability of additional problems
in this dissertation, particularly in settings in which the complexity of
a problem is different under set and bag semantics (for example in
Theorem 4.6.2). Throughout this dissertation, we will say that an LP
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solves a problem exactly, or that an LP is integral, if we can prove that
the optimal face of the LP polytope has integer vertices (sometimes after a
“presolve” phase - some prepossessing heuristics applied by ILP solvers
[84]), and hence the ILP can be solved in PTIME.

Linear Optimization Solvers. A key advantage of modeling problems
as ILPs is of a practical nature. There are many highly-optimized ILP
solvers, both commercial [83] and free [123] which can obtain exact results
fast, in practice. ILP formulations are standardized, and thus programs
can easily be swapped between solvers. Any advances made over time
by these solvers (improvements in the presolve phase, heuristics, and
even novel techniques) can automatically make implementations of these
problems better over time. As such, ILPs are a powerful tool that have
been used in numerous fields, including databases.

For our experimental evaluation we use Gurobi.‡ Gurobi uses an LP
based branch-and-bound method to solve ILPs and MILPs [81]. Gurobi
uses many heuristics to speed up the search for an optimal solution,
including a presolve phase that simplifies the problem before solving it
[84]. This means that it first computes an LP relaxation bound and then
explores the search space to find integral solutions that move closer to
this bound. If an integral solution is encountered (either through the
simplex method that finds extreme points, or via crossover methods)
that has the same objective function value as an LP relaxation optimum
solution, then the solver has found a guaranteed optimal solution, and it
does not need to complete its exhaustive search of the space. Through
many examples throughout this dissertation, we see that whenever we
can prove that the optimal face of the LP polytope has integer vertices,
then we observe that our original ILP formulation solved via Gurobi
terminates in PTIME even without changing the formulation or letting
the solver know anything about the theoretical complexity.

ILPs and Constraint Optimization in Databases. Integer Linear Pro-
gramming has been used in databases for problems such as in solving
package queries [20], query optimization [153], and general optimiza-
tion applications [149]. However, other than our recent work on the
resilience problem [110], we are unaware of any work in databases that
uses ILPs to automatically recover tractable cases by proving that the LP
relaxation polytope has an optimal face with integer vertices and thus
the original ILP problem can be solved in guaranteed PTIME. We show
that a straightforward application of that earlier idea to our generalized
problem formulation does not work as the LP relaxation of the naive
formulation can give fractional optimal solutions (see Example 6.3.2
and Figure 6.7). In Subsections 6.3.2 and 6.3.3 we develop new techniques
that allowed us to prove that the natural LP relaxation of the resulting non-
obvious ILP formulation has the ILP = LP property. We also show the effect in
our experiments Figure 6.9 with a reduction from over 3 hours to under
20 seconds.

‡ Gurobi offers a free academic license https://www.gurobi.com/academia/academic-p
rogram-and-licenses/.
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Resilience is one of the key algorithmic problems underlying various
forms of reverse data management: What is the minimal number of tuples
to delete from a database in order to eliminate all query answers? A long-
open question is determining the conjunctive queries (CQs) for which
resilience can be solved in PTIME. In this chapter, we propose a unified
Integer Linear Programming (ILP) formulation that can solve all known
easy cases of resilience, and also new cases, including self-joins and bag
semantics.

4.1 Problem Statement

This chapter is based on: Neha
Makhĳa and Wolfgang Gatterbauer.
2023. A Unified Approach for Resilience
and Causal Responsibility with Integer
Linear Programming (ILP) and LP Re-
laxations. Proc. ACM Manag. Data 1, 4,
Article 228 (December 2023), 27 pages.
https://doi.org/10.1145/3626
715 [110]. Code is available online:
https://github.com/northeast
ern-datalab/resilience-respo
nsibility-ilp/

Definition 4.1.1 (Resilience [59]) Given a boolean query 𝑄 and database
D, we say that 𝑘 ∈ RES(𝑄, 𝐷) if and only if 𝐷 |= 𝑄 and there exists some
contingency set Γ ⊆ 𝐷 with |Γ|≤ 𝑘 such that 𝐷 − Γ ̸|= 𝑄.

In other words, 𝑘 ∈ RES(𝑄, 𝐷) means that there is a set of 𝑘 or fewer tuples
in D, the removal of which makes the query false. We are interested in
the optimization version RES∗(𝑄, 𝐷) of this decision problem: given 𝑄
and D, find the minimum 𝑘 so that 𝑘 ∈ RES(𝑄, 𝐷). A larger 𝑘 implies that
the query is more “resilient” and requires the deletion of more tuples to
change the query output. A contingency size of minimum size is called a
resilience set.

Our goal is to understand the complexity of solving these problems. The
first result by Buneman et al. [22] showed that the problem is (NPC) for
conjunctive queries (CQs) with projections. Later work that introduced
the term resilience [59] and focused on boolean CQs showed that a large
fraction of self-join-free CQs (“triad-free queries”) can be solved in PTIME,
solving the complexity of self-join-free (SJ-free) queries. However, few
results are known for the cases of CQs with self-joins [60]. This state is
similar to other database problems where establishing complexity results
for self-joins is often considerably more involved than for self-join-free
queries (e.g., compare the dichotomy results on probabilistic databases for
either self-join-free queries [39] with those for self-joins [40]). Moreover,
all these problems have been studied only for set semantics, whereas
relational databases actually use bag semantics i.e., they allow duplicate
tuples [27]. Like self-joins, bags usually make problems harder to analyze
[11, 99, 162], and few complexity results for bag semantics exist.

4.2 Chapter Overview and Contributions

This chapter gives the first dichotomy results under bag semantics for
problems in reverse data management. Our attack on the problem is
unconventional: Rather than deriving a dedicated PTIME algorithm for
certain queries (and proving hardness for the rest), we instead propose a
unified Integer Linear Program (ILP) formulation for all problem variants
(self-joins or not, sets or bags, Functional Dependencies or not). We then
show that, for all PTIME queries, the Linear Program (LP) relaxation of our
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[60]: Freire, Gatterbauer, Immerman, and
Meliou (PODS, 2020), ‘New Results for
the Complexity of Resilience for Bi-
nary Conjunctive Queries with Self-Joins’.
doi:10.1145/3375395.3387647

ILP has the same optimal value, thereby proving that existing ILP solvers
are guaranteed to solve problems for those queries in PTIME.

Contributions and Outline. We propose a unified framework for solving
resilience, give new theoretical results, approximation guarantees, and
experimental results:

1 Unified ILP framework: We propose an ILP formulation for the problems
of resilience that can not only encode all previously studied variants of the
problem, but can also encode all formulations of the problem, including
self-joins and bag semantics (Section 4.3). This unified encoding allows us
to model and solve problems for which currently no algorithm (whether
easy or hard) has been proposed. It also allows us to study LP relaxation
(Section 4.4) of our formulation, which form the basis of several of our
theoretical results.

2 Unified hardness criterion: We prove a variant of an open conjecture from
PODS 2020 [60] by defining a structural certificate called Independent
Join Path (ĲP) and proving that it implies hardness (Section 4.5). We
use this certificate to both all prove hardness for all hard queries in our
dichotomies, and later in Chapter 8 will use it to obtain computationally
derived hardness certificates for previously open queries with self-joins.

3 First results for resilience under bag semantics: We give full dichotomy
results for resilience under bag semantics for the special case of SJ-free
CQs (Section 4.6).

4 Recovering PTIME cases: We prove that for all prior known PTIME
cases of SJ-free queries (as well those shown to be PTIME in this chapter)
(under both set and bag semantics), our ILP is solved in guaranteed
PTIME by standard solvers (Section 4.6). This means that our formulation
is unified not only in being able to model all cases but also in that it is
guaranteed to recover all known PTIME cases by terminating in PTIME. This
new way of modeling the problem opens up a new route for solving
various open problems in reverse data management: by proposing a
universal algorithm for solving all variants, future development does
not depend on finding new dedicated PTIME algorithms, but rather on
proving that the universal method terminates in PTIME (in similar spirit
to proofs in this chapter).

5 Novel approximations: We show 3 different approximation algorithms
for resilience. The first approach based on LP-rounding provides a
guaranteed 𝑚-factor approximation (where 𝑚 is the number of atoms
in the query) for all queries (including self-joins and bag semantics). The
other two are new flow-based approximation techniques designed for
hard queries without self-joins (Section 4.7).

6 Experimental Study: We compare various approaches proposed in
this chapter on different problem instances: easy or hard, for set or bag
semantics, queries with self-joins, and Functional Dependencies. Our
results establish the accuracy of our asymptotic predictions, uncover novel
practical trade-offs, and show that our approach and approximations
create an end-to-end solution (Section 7.12).

4.3 ILP for Resilience

We construct an Integer Linear Program ILP[RES∗(𝑄, 𝐷)] from a CQ 𝑄
and a database Dwhich returns the solution to the optimization problem
RES∗(𝑄, 𝐷) for any Boolean CQ (even with self-joins) under either set
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1: Notice that we also write ILP[problem]
for the optimal value of the program

2: Whether in set or bag semantics, du-
plicate tuples have the same key.

3: Notice that for SJ-free queries, the
number of tuples in each constraint is
exactly equal to the number of atoms in
the query. But for queries with self-joins,
the number of tuples in each constraint
is not fixed (is lower when a tuple joins
with itself).

or bag semantics. 1 This section focuses on the correctness of the ILP.
Section 4.4 later investigates how easy cases can be solved in PTIME,
despite the problem being NPC in general.

To construct the ILP, we need to specify the decision variables, constraints
and objective. As input to the ILP, we first run the query on the database
instance to compute all the witnesses. This can be achieved with a
modified witness query, a query that returns keys for each table, and
thus each returned row is a set of tuples from each of the tables. 2

1. Decision Variables. We create an indicator variable 𝑋[𝑡] ∈ {0, 1} for
each tuple 𝑡 in the database instance D. A value of 1 for 𝑋[𝑡] means that
𝑡 is included in a contingency set, and 0 otherwise. For bag semantics,
Lemma 4.3.1 shows that it suffices to define a single variable for a set
of duplicate tuples (intuitively, an optimal solution chooses either all or
none).

2. Constraints. Each witness must be destroyed in order to make the
output false for a Boolean query (or equivalently, to eliminate all output
tuples from a non-Boolean query). A witness is destroyed, when at least
one of its tuples is removed from the input. Thus, for each witness, we add
one constraint enforcing that at least one of its tuples must be removed.
For example, for a witness w = {𝑟𝑖 , 𝑟𝑗 , 𝑟𝑘} we add the constraint that
𝑋[𝑟𝑖] + 𝑋[𝑟 𝑗] + 𝑋[𝑟𝑘] ≥ 1. 3

3. Objective. Under set semantics, we simply want to minimize the
number of tuples deleted. Since for bag semantics we have made a
simplification that we use only one variable per unique tuple, marking
that tuple as deleted has cost equal to deleting all copies of the tuple.
Thus, we weigh each tuple by the number of times it occurs to create the
minimization objective.

Example 4.3.1 (RES ILP) Consider the Boolean two-chain query with
self-join 𝑄∞2−SJ :−𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧) and a database Dwith a single table
𝑅 {(1, 1), (2, 3)(3, 4)} The query over Dhas 2 witnesses:

x y z
1 1 1 w1 = {𝑟11}
2 3 4 w2 = {𝑟23 , 𝑟34}

Each distinct tuple has a decision variable. Thus, our ILP has 3 variables
𝑋[𝑟11], 𝑋[𝑟23], and 𝑋[𝑟34]. We create a constraint for each unique
witness in the output, resulting in two constraints:

𝑋[𝑟11] ≥ 1
𝑋[𝑟23] + 𝑋[𝑟34] ≥ 1

Finally, the objective is to minimize the tuples deleted, thus, to min-
imize: 𝑋[𝑟11] + 𝑋[𝑟23] + 𝑋[𝑟34]. Solving this results in an objective of
2 at 𝑋[𝑟11] = 1, 𝑋[𝑟23] = 1, 𝑋[𝑟34] = 0. Intuitively, one can see that
RES(𝑄, 𝐷) = 2 as removing 𝑟11 and 𝑟23 from 𝑅 is the smallest change
required to make the query false.

Example 4.3.2 (RES ILP: Bag Semantics) Assume the same problem as
Example 4.3.1, but we allow duplicates in the input. Concretely assume
𝑟23 appears twice: 𝑅′ = {(1, 1) : 1, (2, 3) : 2, (3, 4) : 1}. The variables
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and constraints stay the same, only the objective function changes now
to

min {𝑋[𝑟11] + 2𝑋[𝑟23] + 𝑋[𝑟34]}
Removing 𝑟11 and 𝑟23 is no longer optimal since it incurs a cost of 3.
The optimal solution is now at 𝑋[𝑟11] = 1, 𝑋[𝑟23] = 0, 𝑋[𝑟34] = 1, with
the objective value 2.

Before we prove the correctness of ILP[RES∗(𝑄, 𝐷)] in Theorem 4.3.2, we
will justify our decision to use a single decision variable per unique tuple
with the help of Lemma 4.3.1.

Lemma 4.3.1 (Simplification for RES under Bag Semantics) There exists
a resilience set where for each distinct tuple in D, either all occurrences of the
tuple are in the resilience set, or none are.

Proof Intuition (Lemma 4.3.1). We show that if a tuple 𝑡 is in a contingency
set Γ but a duplicate tuple 𝑡′ is not, then removing 𝑡 leads to a now
smaller contingency set Γ′.

Proof Lemma 4.3.1. Assume there exists an optimally minimal resilience
set 𝑅 such that it contains a tuple 𝑡, but it does not contain an identical
tuple 𝑡′. Since 𝑡 and 𝑡′ are identical, they join with the same tuples and
must participate in same number of witnesses. Since 𝑡′ is not in the
resilience set, for every witness w𝑖 that contains 𝑡′, there must be at
least one tuple 𝑥𝑖 that is in the resilience set. All the witnesses that 𝑡
participates in, must also contain a tuple from the set of 𝑥𝑖 . If none of the
𝑥𝑖 tuples is 𝑡 itself, then we can safely remove 𝑡 from 𝑅. Thus, R is not
minimal, and we have a contradiction.

However, in the case that there exists an 𝑥𝑖 = 𝑡, this implies that w𝑖

contains 𝑡 and 𝑡′ (along with 0 or more other tuples 𝑇[w𝑖]). Since 𝑡 and
𝑡′ are identical, it follows that there is an identical witness created due
to joining 𝑡′ with itself. This witness too must be destroyed - hence one
of 𝑇[w𝑖] is in the resilience set, and we safely remove 𝑡, leading to a
contradiction.

Theorem 4.3.2 (RES ILP correctness) ILP[RES∗(𝑄, 𝐷)] = RES∗(𝑄, 𝐷) for
any CQ 𝑄 and database D under set or bag semantics.

Proof Intuition. We prove validity by showing that any satisfying solu-
tion would necessarily destroy all witnesses i.e. make the query false.
Optimality is proved by showing that any valid resilience set would be a
valid solution for the ILP.

Proof Theorem 4.3.2. The proof is divided into parts to separately show
the validity and optimality of ILP[RES∗(𝑄, 𝐷)]. An invalid solution would
not destroy all the witnesses in the output, while a suboptimal solution
would have size bigger than the minimum resilience set.

▶ Proof of Validity: Assume a solution is invalid i.e. after deleting the
tuples in the resilience Set, the number of output witnesses is not 0.
Since 𝑄 is monotone, this witness existed in the original database
as well. A witness can only survive if all the tuples in the witness
are not a part of the resilience Set. Such a solution would hence
violate the constraint for the surviving witness and hence would
not be generated by the ILP.
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▶ Proof of Optimality: Assume a solution is not optimal i.e. there
exists a strictly smaller, valid resilience Set 𝑅′. We could translate
this set into a variable assignment 𝑋̄ to 𝑋[𝑡] where 𝑋̄[𝑡] = 1 if
𝑡 ∈ 𝑅′. Since 𝑅′ is a valid resilience Set, it would satisfy all the
constraints to destroy all witnesses in Dand also be a valid solution
for ILP[RES∗(𝑄, 𝐷)]. Thus, it cannot be smaller than the optimal
solution for ILP[RES∗(𝑄, 𝐷)].

We would like to stress to the reader that changing from sets to bags
affects only the objective function, not the constraint matrix. Later in
Section 4.6, we will prove that for queries such as 𝑄△

𝐴
, the problem of

finding resilience becomes NPC under bag semantics, while it is solvable
in PTIME under set semantics. This observation is significant because
most of the literature on tractable cases in ILP focuses exclusively on
analyzing the constraint matrix. For example, if an ILP has a constraint
matrix that is Totally Unimodular it is PTIME no matter the objective
function [145, Section 19].

4.4 PTIME Relaxation of ILP[RES∗]

The previous sections introduced a unified ILPs to solve for RES. However,
ILPs are NPC in general, and we would like stronger runtime guaran-
tees for cases where RES can be solved in PTIME. We do this with the
introduction of LP relaxations, which generally act as lower bounds for
minimization problems. However, in Section 4.6 we prove that these
relaxations LP[RES∗] is actually always equal to the corresponding ILPs
for all easy cases. Thus, whether easy or hard, exact or approximate,
problems can be solved within the same framework, with the same
solver, with minimal modification, and with the best-achievable time
guarantees.

LP Relaxation for RES. LP Relaxations are constructed by relaxing (remov-
ing) integrality constraints on variables. In ILP[RES∗], a tuple indicator
variable 𝑋[𝑡] only takes values 0 or 1. LP[RES∗] removes that constraint
and allows the variables any (“fractional”) value in [0, 1].

4.5 Finding hardness certificates

Freire et al. [60] conjectured that the ability to construct a particular
certificate called “Independent Join Path” is a sufficient criterion to prove
hardness of resilience for a query. We prove here that not the original but
a slight variation of that idea is indeed correct. We also prove that this
construction is a necessary criterion for hardness of self-join-free queries and
conjecture it to be also necessary for any query. In addition, in Chapter 8,
we also give a Disjunctive Logic Program (DLP[RESIJP]) that can create
hardness certificates and use it to prove hardness for 5 previously open
queries with self-joins.

4.5.1 Independent Join Paths (ĲPs)

We slowly build up intuition to define ĲPs (Definitions 4.5.1 and 4.5.2).
Recall the concept of a canonical database for a minimized CQ resulting
from replacing each variable with a different constant [25, 154]. For example
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Figure 4.1: (a) ĲP for triangle query
𝑄△

𝐴
. (b) ĲPs are composed by shar-

ing their endpoints (start or terminal
tuples).

𝐴(1), 𝑅(1, 2), 𝑆(2, 3), 𝑇(3, 1) is a canonical database for the triangle query
𝑄△

𝐴
:−𝐴(𝑥), 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥). Intuitively, one can think of a witness

as more general than a canonical database in that several variables may
map to the same constant. A join path is then a set of witnesses that
share enough constants to be connected (this sharing of constants can be
best formalized as a partition of the constants among a fixed number of
witnesses). In addition, join paths are defined with two “isomorphic” sets
of tuples, the start Sand terminal T(both together called the “endpoints”).
We call two sets of tuples isomorphic iff there a bĳective mapping between
the constants of the sets that preserves the sets of shared constants across
table attributes. For example, S1 = {𝑅(1, 2), 𝐴(2), 𝑅(2, 2)} is isomorphic
to S2 = {𝑅(3, 4), 𝐴(4), 𝑅(4, 4)} but not to S2 = {𝑅(3, 4), 𝐴(4), 𝑅(4, 5)}.

Definition 4.5.1 (Join Path (JP)) A database D forms a Join Path from a set
of tuples S (start) to T (terminal), for query 𝑄 if

1. Each tuple in D participates in some witness (i.e. D is reduced).
2. The witness hypergraph is connected.
3. Sand T form a valid endpoint pair, i.e.:

(i) Sand Tare isomorphic and non-identical.
(ii) There is no endogenous tuple 𝑡 ∈ 𝐷, 𝑡 /∈ S∪Twhose constants

are a subset of the constants of tuples in S∪T.

Example 4.5.1 (Join paths) Consider again the query𝑄△
𝐴

. The following
database of 9 tuples (Figure 4.1a) 𝐷 = {𝐴(1), 𝐴(4), 𝑅(1, 2), 𝑅(4, 2),
𝑅(4, 5), 𝑆(2, 3), 𝑆(5, 3), 𝑇(3, 1), 𝑇(3, 4)}where 𝐴(1) and 𝐴(4) are exoge-
nous, forms a join path from {𝑆 = {𝑅(1, 2)} to T= {𝑅(4, 5)}. It has 3
witnesses w1 = {𝐴(1), 𝑅(1, 2), 𝑆(2, 3), 𝑇(3, 1)}, w2 = {𝐴(4),
𝑅(4, 2), 𝑆(2, 3), 𝑇(3, 4)}, and w3 = {𝐴(4), 𝑅(4, 5), 𝑆(5, 3), 𝑇(3, 4)}. This
join path can also be interpreted as a partition {{𝑥1}, {𝑥2 , 𝑥3}, {𝑦1 , 𝑦2},
{𝑦3}, {𝑧1 , 𝑧2 , 𝑧3}} on the canonical databases for three witnesses w𝑖 =
{𝐴(𝑥 𝑖), 𝑅(𝑥 𝑖 , 𝑦 𝑖), 𝑆(𝑦 𝑖 , 𝑧 𝑖), 𝑇(𝑧 𝑖 , 𝑥 𝑖)}, 𝑖 = 1, 2, 3, expressing the shared
constants in each subset. Then above database instance results from
the following valuation 𝜈 of the quotient set {[𝑥1], [𝑥2], [𝑦1], [𝑦3], [𝑧1]}
to constants: 𝜈 : (𝑥1 , 𝑦1 , 𝑧1 , 𝑥2 , 𝑦3)→ (1, 2, 3, 4, 5). Notice that Sand
T form a valid endpoint pair because (𝑖) Sand Tare isomorphic with
the mapping 𝑓 = {1 : 3, 2 : 4} and (𝑖𝑖) there is no endogenous tuple
with constants only from {1, 2, 3, 4}. 𝐴(1) and 𝐴(4) violate the subset
requirement, however they are exogenous, so the definition is fulfilled.

We also call two join paths isomorphic if there is a bĳective mapping
between the shared constants across the witnesses. Given a fixed query, we
usually leave away the implied qualifier “isomorphic” when discussing
join paths. We talk about the “composition” of two join paths if one
endpoint of the first is identical to an endpoint of the second, and all
other constants are different. We call a composition of join paths “non-
leaking” if the composition adds no additional witnesses that were not
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already present in any of the non-composed join paths.

Example 4.5.2 (Join path composition) Consider the composition of
two JPs shown in Figure 4.1b. They are isomorphic because there
is a reversible mapping (1, 2, 3, 4, 5) → (4, 5, 6, 7, 8) from one to the
other. They are composed because they share no constants except for
their endpoints: The terminal T1 = {𝑅(4, 5)} of the first is identical to
the start of the second (S2). The composition is non-leaking since no
additional witnesses results from their composition.

Proposition 4.5.1 (Triangle composition) Assume a join path (JP) with
endpoints Sand T. If 3 isomorphic JPs composed in a triangle with directions
as shown in Figure 4.2 are non-leaking, then any composition of JPs is
non-leaking.

Proof Intuition (Proposition 4.5.1). Since JPs can be asymmetric, the
composability due to sharing the S tuples in two isomorphic JPs differs
from sharingSand T. We show that the three JP interactions in Figure 4.2
act as sufficient base cases to model all types of interactions. We show via
induction that sharing the same end tuples across multiple JPs cannot
leak if it does not leak in the base case.

Proof Proposition 4.5.1. Condition (3𝑖𝑖) of Definition 4.5.1 implies that
given two canonical join paths (they are isomorphic, and all constants are
distinct), sharing the constants in one end point of each guarantees that
the only endogenous tuples that the join paths shares are the endpoint
tuples. What can happen is that this sharing of endpoints creates additional
witnesses which will affect the resilience of the resulting database instance.
What we like to prove is that if the composition from Figure 4.2 is not
leaking, then any composition is non-leaking (and thus creates no new
witnesses).

From the condition that the endpoints of a join path have disjoint
constants, and the fact that any two join paths can share maximally
one endpoint, it follows that the tuples from two join paths that are
not sharing any endpoint cannot create additional witnesses; additional
witnesses can only be created by two join paths sharing an endpoint.

Since join paths can be asymmetric, there are three ways that two join
paths can create additional witnesses: they are either sharing the start
tuples, or the terminal tuples, or one start tuple is identical to the other
end tuple. All three cases are covered by Figure 4.2.

It remains to be shown that sharing the same end tuples across multiple
join paths can’t add additional witnesses. This follows now from induction
with the three base cases covered above. To illustrate, assume adding
a third join path by their terminal to a start tuples shared by two join
paths leads to additional witnesses. Then from the isomorphism between
the two prior join paths it follows that a new witness would have to be
created from having only one join path with the end tuples as start tuples.
This is a contradiction. The same argument can be used for adding join
paths to the other three bases cases.

Definition 4.5.2 (Independent Join Path) A Join Path D forms an Inde-
pendent Join Path (ĲP) if it fulfills two additional conditions:
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Join	Path	1

Join	Path	2 Join	Path	3

𝒯!

𝒯" = 𝒮#

𝒮!
𝒮"=

𝒯#= Figure 4.2: 3 JPs composed in a tri-
angle with shown edge directions.

4. “OR-property”: Let 𝑐 be the resilience of 𝑄 on D. Then resilience is
𝑐−1 in all 3 cases of removing either Sor Tor both.

5. Any composition of two or more isomorphic JPs is non-leaking.

Example 4.5.3 (ĲPs) Consider again the JP from Figure 4.1a. The
resilience is 𝑐 = 2 as removing Γ = {𝑆(2, 3), 𝑇(3, 4)} destroys all 3
witnesses. Removing S = {(1, 2)} destroys w1, and it suffices to just
remove one tuple Γ′ = {𝑇(3, 4)} to destroy the remaining 2 witnesses.
Similarly, for removing either T, or both S and T. This proves the
OR-property of this JP. Further composing 3 JPs in a triangle as shown
in Figure 4.2 is non-leaking (the resulting database has 9 witnesses),
and thus this JP is an ĲP.

We now prove that the ability to create an ĲP for a query proves its
resilience to be hard. This was left as an open conjecture in [60].

Theorem 4.5.2 (ĲPs⇒ NPC) If there is a database D that forms an ĲP for
a query 𝑄, then RES(𝑄) is NPC.

Proof Intuition. This proof uses the ĲP to build a reduction from Vertex
Cover to RES(𝑄). The ĲP acts as a hardness gadget for the edges. We
show that the decision version of resilience of an appropriately chosen
database can be used to solve the decision version of vertex cover of a
given graph.

Proof Theorem 4.5.2. The proof follows from a simple reduction from
vertex cover. Assume 𝑄 can form ĲPs of resilience 𝑐. Take any directed
simple graph 𝐺(𝑉, 𝐸) with 𝑛 nodes and 𝑚 edges. Encode each node
𝑣 ∈ 𝑉 with a unique tuple 𝒗 = (⟨𝑣1⟩, ⟨𝑖𝑣⟩, . . . , ⟨𝑣𝑑⟩) ∈ 𝑅 where 𝑑 is the
arity of 𝑅. Encode each edge (𝑣, 𝑢) ∈ 𝐸 as separate ĲP from 𝑅(𝒗) to 𝑅(𝒖)
with fresh constants except their endpoints. Then 𝐺 has a Vertex Cover
of size 𝑘 iff resilience RES∗(𝑄, 𝐷) is 𝑘 + 𝑚(𝑐 − 1).

Notice that the semantic condition 5 is needed. It guarantees that there is
no tuple (other than the endpoints) that are shared between two different
join paths (corresponding to the edges), and no additional joins are
created. Without that condition, the join paths are not independent and
leakage across join paths could otherwise change the resilience of the
composition.

We next prove that the ability to create an ĲP for a self-join-free CQ is not
only a sufficient but also a necessary criterion for hardness. This suggests
that ĲPs are a strictly more powerful criterion for resilience than the
previous notion of triads [59]: they capture the same hardness for SJ-free
queries, but can also prove hardness for queries with self-joins that do
not contain a triad.
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Theorem 4.5.3 (ĲPs⇔NPC for SJ-free CQs) The resilience of a SJ-free
CQ under set semantics is NPC iff it has an ĲP.

Proof Intuition (Theorem 4.5.3). We generalize all past hardness results
[59] for SJ-free queries by showing that the same hardness criteria (triads)
that was necessary and sufficient for hardness, can always be used to
construct an ĲP and show this construction.

Proof Theorem 4.5.3. We already know from Theorem 4.5.2 that ĲPs⇒
NPC. We also know from [59] that all hard queries must have an active
triad. Recall that an active triad is a set of three endogenous (and therefore,
non-dominated) atoms, T= {𝑅1 , 𝑅2 , 𝑅3} such that for every pair 𝑖 ̸= 𝑗,
there is a path from 𝑅𝑖 to 𝑅 𝑗 that uses no variable occurring in the other
atom of T. It remains to be shown that queries with triads also have an
ĲP.

Let 𝑞 be a query with triad T= {𝑅1 , 𝑅2 , 𝑅3}. We will choose appropriate
constants to build an ĲP from {𝑅1(a)} to {𝑅1(b)} consisting of three
witnesses {w1 ,w2 ,w3} s.t. w1 and w2 share 𝑅2 and w2 and w3 share
𝑅3. In other words, we compose the 3 paths from the triad as 𝑅1(a)→
𝑅2(c)→ 𝑅3(d)→ 𝑅1(b).

We will assume that no variable is shared by all three elements of T (we
can ignore any such variable by setting it to a constant). Our proof splits
into two cases:

Case 1: var(𝑅1), var(𝑅2), var(𝑅2) are pairwise disjoint: We use unique con-
stants 𝑎, 𝑏, 𝑐, 𝑑, 𝑤1 , 𝑤2 , 𝑤3 and add tuples 𝑅1(𝑎, 𝑎, . . . , 𝑎), 𝑅2(𝑐, 𝑐, . . . , 𝑐),
𝑅3(𝑑, 𝑑, . . . , 𝑑), and 𝑅1(𝑏, 𝑏, . . . , 𝑏) to D.

To define the relations corresponding to the other atoms in w1, we
first partition the variables of 𝑞 into 3 disjoint sets: var(𝑞) = var(𝑅1) ∪
var(𝑅2)∪𝑊1. Now for each atom 𝐴𝑖 ∈ 𝑞 \ {𝑅1 , 𝑅2}, arrange its variables
in these three groups. Then define a tuple (𝑎; 𝑑;𝑤1) to relation 𝑅𝑖 of D
corresponding to atom 𝐴𝑖 . For example, all the variables 𝑣 ∈ var(𝑅1) are
assigned the value 𝑎 and all the variables 𝑣 ∈𝑊1 are assigned 𝑤1. Repeat
the same process analogously for witnesses w2 and w3.

From our construction w1 and w2 share only one single endogenous
tuple: 𝑅2(c). This follows from the fact that there is no other tuple that
dominates (has a subset of variables) of endogenous tuples. It follows
that every endogenous tuple in w1 needs to contain at either at least
constant 𝑎 or 𝑤1 (and optionally 𝑐) Similarly every endogenous tuple in
w2 needs to contain at either at least constant 𝑑 or 𝑤2 (and optionally 𝑐).

It follows that the resilience of the resulting database is identical to
vertex cover of the graph 𝑅1(a)→ 𝑅2(c)→ 𝑅3(d)→ 𝑅1(b), which fulfills
condition (4) of Definition 4.5.2. Condition (5) follows from the same fact
that every tuple in one join path needs to contain at least one constant
not contained a tuple from another join path, other than the maximally
one shared endpoint.

Case 2: var(𝑅𝑖) ∩ var(𝑅 𝑗) ̸= ∅ for some 𝑖 ̸= 𝑗: The previous construction
can now be generalized from Case 1 by partitioning var(𝑅𝑖) into those
unshared, those shared with 𝑅𝑖−1, and those shared with 𝑅𝑖+1 (addition
here is mod 3) and verifying that the resulting database still fulfills the
same conditions (4) and (5).
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Figure 4.3: Simple hardness gadgets
for prior known hard queries.

4.5.2 More Example ĲPs

We also give simpler automatically derived ĲPs for 𝑘 = 3 for the following
3 previously known hard queries. The original hardness proofs for those
queries [59] are pretty involved and cover several pages. Our new hardness
proofs are just Figure 4.3 given Theorem 4.5.2.

4.6 Complexity results for SJ-free CQs

Table 4.1: Complexity Landscape for Resilience. All results follow from our unified framework. Results highlighted with
a yellow background are new. Some theorems apply to multiple settings (thus shown repeatedly) and include earlier
results as special cases.

Type of query Example Set Semantics Bag Semantics
Linear Queries 𝑄∞2 PTIME (thm. 4.6.1) PTIME (thm. 4.6.1)
With Deactivated Triads 𝑄△

𝐴𝐵
, 𝑄△

𝐴
PTIME (thm. 4.6.2) NPC (thm. 4.6.3)

With Active Triads 𝑄△ , 𝑄★
3 NPC (thm. 4.5.3)

This section gives complexity results for both RES or SJ-free queries,
under set and bag semantics (see Table 4.1). Our results include both
prior known results and new results. Importantly, all our hard cases are
derived with our unified hardness criterion (ĲPs) from Section 4.5, and
all tractable cases follow from our unified algorithms in Sections 4.3
and 4.4.

4.6.1 Necessary notations

Before diving into the proofs, we define a few key concepts stemming
from domination (Definition 4.6.2) that lead up to the three structural
criteria (Definition 4.6.6) which completely describe our dichotomy
results. Notice that the notion of triads has been previously defined [59].
However, we extend this notion and make it more-fine grained. The
previous definition of triad now corresponds exactly to the special case
of “active triads.”

Definition 4.6.1 (Exogenous / Endogenous tuples) A tuple is exogenous
if it must not or need not participate in a contingency set, and endogenous
otherwise.

Prior work [117] has defined relations (or atoms) to be exogenous or
endogenous, i.e. when all tuples in any relation (or relation of the atom)
are either exogenous or endogenous. We use but also generalize this
notation to allow individual tuples to be declared exogenous (but keep
them endogenous by default). We will see later in Section 4.5 that this
generalization allows us to formulate resilience and responsibility with a
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simple universal hardness criterion.‗ The set of exogenous tuples 𝐸 ⊂ 𝐷
can be provided as an additional input parameter as in RES(𝑄, 𝐷, 𝐸) and
RSP(𝑄, 𝐷, 𝑡, 𝐸). We assume a database instance has no exogenous tuples
unless explicitly specified, and we omit the parameter for simplicity.

Definition 4.6.2 (Domination [59]) In a query 𝑄 with endogenous atoms
𝐴 and 𝐵, we say 𝐴 dominates 𝐵 iff var(𝐴) ⊂ var(𝐵).

Definition 4.6.3 (Triad (different from [59])) A triad is a set of three
atoms, T= {𝑅1 , 𝑅2 , 𝑅3} s.t. for every pair 𝑖 ̸= 𝑗, there is a path from 𝑅𝑖 to
𝑅 𝑗 that uses no variable occurring in the third atom of T.

Definition 4.6.4 (Solitary variable [59]) In a query 𝑄 a variable 𝑣 in
relation𝐴 is solitary if, in the query hypergraph it cannot reach any endogenous
atom 𝐵 ̸= 𝐴 without passing through one of the nodes in var(𝐴) − 𝑣.

Definition 4.6.5 (Full domination [59]) An atom 𝐴 of CQ 𝑄 is fully
dominated iff for all non-solitary variables 𝑦 ∈ var(𝐴) there is another atom
𝐵 such that 𝑦 ∈ var(𝐵) ⊂ var(𝐴).

Definition 4.6.6 (Active or (fully) deactivated triads) A triad is deacti-
vated iff at least one of its three atoms is dominated by another atom of the
query. A triad is fully deactivated iff at least one of its three atoms is fully
dominated by another atom of the query. A triad is active iff none of its atoms
are dominated.

We call queries linear if they do not contain triads. Here we depart from
prior work that referred to linear queries as queries without what we
now call active triads [59]. We instead say that queries without active
triads are linearizable.†

Example 4.6.1 Consider the triad {𝑅, 𝑆, 𝑇} in all 3 queries 𝑄△, 𝑄△
𝐴

, and
𝑄△

𝐴𝐵 𝑄△ :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥)
𝑄△

𝐴
:−𝐴(𝑥), 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥), and

𝑄△
𝐴𝐵

:−𝐴(𝑥), 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥), 𝐵(𝑧),
respectively

. The triad is deactivated in 𝑄△
𝐴

and 𝑄△
𝐴𝐵

because 𝐴 dominates
both 𝑅 and 𝑇. The triad is fully deactivated in 𝑄△

𝐴𝐵
because 𝑇 is fully

dominated by 𝐴 and 𝐵. The triad is active in 𝑄△ since none of the three
tables in the triad are dominated. The chain with ends query 𝑄∞2WE has
no triad and is thus linear.

4.6.2 Dichotomies for RES under Sets and Bags

This section proves that for all SJ-free CQs, either LP[RES∗] solves RES
exactly (and the problem is hence easy for any instance), or we can form
an ĲP (and thus the problem is hard). Our results cover both set and bag
semantics (see Table 5.1).

Theorem 4.6.1 (Integrality ofLP[RES∗] for Linear Queries) LP[RES∗(𝑄, 𝐷)]
= RES∗(𝑄, 𝐷) for all database instances Dunder set or bag semantics if 𝑄 is
linear.

‗ In more detail, we will formulate hardness of responsibility via an Independent Join Path
which is only possible because one specified tuple is exogenous, e.g. Theorem 5.5.4.

† The intuition of “linearity” is that the vertices of the dual hypergraph 𝐻𝑑 of 𝑄 can be
mapped onto a line s.t. 𝐻𝑑 has the running intersection property [13].
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Proof Intuition (Theorem 4.6.1). We prove that all optimal LP solutions
correspond to a valid integral solution by using the flow graph for
resilience introduced by prior work [117] as an intermediary. We show
that every LP solution corresponds to a valid cut of the graph. It follows
from the max-flow Integrality Theorem [58] that there must be an optimal
integral solution with the same objective value.

Proof Theorem 4.6.1. Prior approaches show that the witnesses generated
by a linear query 𝑄 over database instance D can be encoded in a flow
graph [117] such that each path of the flow graph represents a witness
and each edge with non-infinite weight represents a tuple. The flow
graph is such that an edge participates in a path iff the corresponding
tuple is part of the corresponding witness. The min-cut of this graph (or
the minimum edges to remove to disconnect the source from the target),
is equal to RES(𝑄, 𝐷).

We use this prior result to prove that LP[RES∗(𝑄, 𝐷)] = RES∗(𝑄, 𝐷) by
showing that the Linear Program solution represents all possible cuts
for the flow graph, and vice versa. For each constraint of the LP (that
corresponds to a witness), we have a source to target path in the flow graph.
Thus, whenever we have an edge cut in a flow graph path, a corresponding
constraint of the LP is fulfilled by deleting the corresponding tuple (and
vice versa). As discussed in Section 3.3, it is well established (through
the flow integrality theorem [144, Theorem 5.22] and Edmonds-Giles
theorem on Total Dual Integrality [48, Theorem 7.1]) that the LP polytope
of the cuts of a flow graph is integral, i.e. all extreme points of the
polytope are integral, and hence the optimal solution of the ILP can be
found in PTIME.

Theorem 4.6.2 (Integrality of LP[RES∗] for queries with deactivated
triads under set semantics) LP[RES∗(𝑄, 𝐷)] = RES∗(𝑄, 𝐷) for all database
instances D under set semantics if all triads in 𝑄 are deactivated.

Proof Intuition (Theorem 4.6.2). Prior work [59] has shown that queries
that contain only deactivated triads (previously called dominated triads)
can be linearized due to domination (Definition 4.6.2). We show that this
linearization does not change the optimal solution to the LP formulation
under set semantics. Notice that domination does not work under bag
semantics, which leads to a different tractability frontier.

Proof Theorem 4.6.2. Assume 𝑅, 𝑆, 𝑇 are the tables in a deactivated triad
in 𝑄 and W.l.o.g. assume 𝑅 is dominated by a relation 𝐴. We show that
𝑅 can be made exogenous because there exists an optimal resilience
set that does not contain any tuple from 𝑅. We can see that for each
tuple 𝑟𝑖 in 𝑅, there exists a tuple 𝑎𝑖 in 𝐴 such that 𝑎𝑖 participates in the
same or more witnesses than 𝑟𝑖 . Thus, whenever we have a contingency
set that contains 𝑟𝑖 , we can replace it with 𝑎𝑖 and still fulfill the same
constraints, without increasing the cost of the contingency set. We can
do this because under set semantics, we only care about the number of
tuples in a contingency set, since the cost assigned to removing a tuple is
always 1. We can thus make all tuples in 𝑅 exogenous (allowing them to
take on value 0 in the ILP solution or essentially removing the variable
from the constraints) without changing the optimal solution of the ILP.
Such a process is typically part of the presolve step of ILP solvers [84],
and we can remove variables whose constraints are subsumed by the
constraints of other variables. This process can be performed in PTIME
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(we can see this is naively true by comparing the constraints of all pairs
of variables in the ILP).

The resulting ILP now has a reduced dimension, since all tuples in 𝑅
are now exogenous. We next can show that this new constraint matrix
that creates a reduced-dimension polytope represents the cuts of a flow
graph, and thus all extreme points of the polytope are integral. Let 𝑄′
be the query where for each deactivated triad, all dominated tables
have been made exogenous. We can then construct a flow graph for
𝑄′ by using the same method as prior approaches [59] to create flow
graphs for queries with exogenous tables via dissociation. All dissociated,
exogenous tuples in the flow graph can simply be represented with
infinite capacity edges (since they never need to be part of an optimal
solution). This flow graph is now equivalent to the flow graph for 𝑄
that represents the reduced-dimension polytope (and it preserves an
optimal solution of the original ILP). Thus, we can use the flow integrality
theorem and the integrality of TDI systems as discussed in Section 3.3
and used in Theorem 4.6.1 to show that the polytope is integral, and thus
LP[RES∗(𝑄, 𝐷)] = RES∗(𝑄, 𝐷).

Theorem 4.6.3 (Hardness of RES for non-linear queries under bag
semantics) RES(𝑄) is NPC under bag semantics if 𝑄 is not linear.

Proof Intuition (Theorem 4.6.3). For queries with active triads, the ĲPs
(Theorem 4.5.3) imply hardness for bag semantics as well. We prove
that all triads are hard by showing that including a fixed number of
copies of a dominating table is equivalent to making it exogenous. Thus,
domination does not work under bag semantics, and any triad (even a
fully deactivated one) implies hardness.

Proof Theorem 4.6.3. A non-linear query by definition must contain triads.
If the query contain active triads, then Theorem 4.5.3 can be applied
in the bag semantics setting as well to show that RES is NPC. However,
the same ĲP does not directly work for (fully) deactivated triads -
since the endpoints are part of the triad tables, they can be dominated
by another tuple in the ĲP. Then the optimal resilience would be to
choose the dominating tuple, thus no longer fulfilling the first criteria
of independence. Hence, we must have a slightly different ĲP with the
property that the dominating table is exogenous. To make the dominating
table exogenous, it suffices that we have 𝑐𝑤 copies of each tuple from the
table in the ĲP (where 𝑐𝑤 is the number of witnesses in the ĲP under
set semantics), and 1 copy of all other tuples. Using Lemma 4.3.1 where
we showed that it is never beneficial to remove some copies of a tuples,
and the fact that the resilience of the ĲP is at most 𝑘, we can see that it is
never necessary to remove tuples from the dominating table.

The results in this section, along with Theorem 4.5.3 imply the following
dichotomies under both set and bag semantics:

Corollary 4.6.4 (Resilience Dichotomy under set semantics) Under set
semantics, RES∗(𝑄, 𝐷) is in PTIME for queries that do not contain active
triads, otherwise it is NPC.

Corollary 4.6.5 (Resilience Dichotomy under bag semantics) Under bag
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[157]: Vazirani (2001), Approximation algorithms.
doi:10.1007/978-3-662-04565-7

semantics, RES∗(𝑄, 𝐷) is in PTIME for queries that do not contain triads,
otherwise it is NPC.

4.7 Three Approximation Algorithms

We describe one LP-based approximation algorithm and two flow-based
approximation algorithms for RES, all three of which apply to both set
and bag semantics.

4.7.1 LP-based m-factor Approximation

For a given query with𝑚 atoms, we use a standard LP rounding technique
[157] with the threshold of 1/𝑚 i.e., we round up variables whose value
is ≥1/𝑚 or set them to 0 otherwise.

Theorem 4.7.1 (𝑚-factor approximation for RES) The LP Rounding
Algorithm is a PTIME 𝑚-factor approximation for RES.

Proof Intuition (Theorem 4.7.1). Verification of PTIME solvability and the
m-factor bound is trivial, and correctness follows by showing validity of
each constraint for a rounded solution.

Proof Theorem 4.7.1. The LP-Rounding algorithm is PTIME since it re-
quires the solution of a linear program, which can be found in PTIME,
and a single iteration over the tuple variables. We also see that it is
bounded by 𝑚 ∗ LP[RES∗(𝑄, 𝐷)] since each variable is multiplied by at
most 𝑚, and since LP[RES∗(𝑄, 𝐷)] ≤ ILP[RES∗(𝑄, 𝐷)], the algorithm is
at most 𝑚-factor the optimal value. Thus, it remains to prove that 𝑋𝐼

returned by the rounding, satisfies all constraints of ILP[RES∗(𝑄, 𝐷)]. We
know that for every constraint, we involve at most 𝑚 tuple variables‡.
Since the sum of these variables in 𝑋 𝑓 must be at least 1 (due to the
constraints of LP[RES∗]), there must exist at least one tuple variable in
each constraint with value ≥ 1/𝑚. Thus, in 𝑋𝐼 , for each constraint, there
is a tuple variable 𝑡 such that 𝑋𝐼[𝑡] = 1 and all constraints are satisfied.

4.7.2 Flow-based Approximations

Non-linear queries cannot be encoded as a flow graph since they do
not have the running-intersection property. The idea behind flow-based
approximations is to add either witnesses or tuples (while keeping the
other constant) to linearize a non-linear query. This works since adding
more tuples or witnesses can only increase RES for monotone queries.
Since there are multiple arrangements to linearize a query, we take the
minimum over all non-symmetric arrangements, explained next for the
two variants:

Constant Tuple Linearization Approximation (Flow-CT). We keep the
same tuples as the original database in each arrangement. However, since
the query is non-linear, these flow graphs may have spurious paths that
do not correspond to any original witnesses, thus inadvertently adding

‡ For SJ-free cases, exactly 𝑚 tuples are involved, but for queries with self-join a witness
can have less than 𝑚 tuples
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Figure 4.4: Flow approximation lin-
earizations for Example 4.7.1.

[66]: Gatterbauer and Suciu (VLDBJ, 2017),
‘Dissociation and propagation for approx-
imate lifted inference with standard re-
lational database management systems’.
doi:10.1007/s00778-016-0434-5

witnesses. For a query with 𝑚 atoms, there are up to 𝑚! /2 linearizations
due to the number of asymmetric ways to order them.

Constant Witness Linearization Approximation (Flow-CW). We keep the
same witnesses as the original database instance in each linearization,
however the query is changed by adding variables to tables (which is
equivalent to dissociating tuples) to make it linear. The number of such
linearizations is equal to the number of minimal dissociations [66].

Example 4.7.1 Consider the 𝑄△ query with the following witnesses:

x y z
1 1 1 w1 = {𝑟11 , 𝑠11, 𝑡11}
1 1 2 w2 = {𝑟11 , 𝑠12, 𝑡21}
2 1 2 w3 = {𝑟21 , 𝑠12, 𝑡22}

Then there are 3 Flow-CT linearizations (Figure 4.4a) and 3 Flow-CW
linearizations (Figure 4.4b). The approximated resilience corresponds
to the minimum of the min-cut over all linearized flow graphs. In this
example, we see that both Flow-CT and Flow-CW happen to return the
optimal value of 2 as approximation.

4.8 Experiments

Our experimental objective is to answer the following questions: (1)
How does our ILP scale for PTIME queries, and how does it compare
to previously proposed algorithms that use flow-based encodings [117]?
(2) Are our LP relaxations (proved to be correct for PTIME queries in
Section 4.6) indeed correct in practice? (3) What is the scalability of ILPs
and LPs for settings that are proved NPC? (4) What is the quality of our
approximations from Section 4.7?

Algorithms. ILP denotes our ILP formulations for RES. ILP(10) denotes
the solution obtained by stopping the solver after 10 seconds.§ LP denotes

§ Solvers often already have the optimal solution by this cutoff, despite the ILP taking
longer to terminate. This is because although the solver has stumbled upon an optimal
solution, it may not yet have a proof of optimality (in cases where LP!=ILP).
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Figure 4.5: Setting 1: Hard 3-star
query 𝑄★

3 .

4: The build-times to create the ILP or
flow graphs are not plotted since they
were negligible in comparison to the
solve-time.

LP relaxations for RES. Flow denotes an implementation of the prior max-
flow min-cut algorithm for RES for queries that are in PTIME [59, 117].¶
LP-UB denotes our 𝑚-factor upper bound obtain by the LP rounding algo-
rithm. Flow-CW and Flow-CT represent our approximations via Constant
Witness Linearization and Constant Tuple Linearizations, respectively.

Data. We use synthetic data for our experiments. For any synthetic data
experiment, we fix the maximum domain size, and sample randomly
from all possible tuples. For testing our methods under bag semantics,
each tuple is replicated by a random number that is smaller than a
pre-specified max bag size.

Software and Hardware. We implement the algorithms using Python
3.8.5 and solve the respective optimization problems with Gurobi Op-
timizer 8.1.0 [83]. Experiments are run on an Intel Xeon E5-2680v4
@2.40GHz machine available via a cluster.

Experimental Protocol. For each plot we run 30 runs of logarithmically
and monotonically increasing database instances. We plot all obtained
points with a low saturation, and then draw a trend line between the
median points from logarithmically increasing sized buckets. All plots
are log-log, with the x-axis representing the number of witnesses. The
y-axis for plots on the left shows the solve-time (in seconds) taken by the
solver to solve a RES or mincut problem.4 We include a dashed line to
show linear scalability as reference in the log-log plot.

4.8.1 Experimental Settings

Setting 1: Resilience Under Set Semantics. We consider the 3-star query
𝑄★

3 :−𝑅(𝑥), 𝑆(𝑦), 𝑇(𝑧),𝑊(𝑥, 𝑦, 𝑧) which contains an active triad and is
hard (Figure 4.5). The top plots show the growth of solve-time and
resilience for increasing instances, while the bottom plots show the

¶ For the min-cut algorithm, we also experimented with both LP and Augmented Path-
based algorithms via the NetworkX library [146]. Since the time difference in the methods
was not significant, we leave it out and all running times reported in the figures use the
same LP library Gurobi [83].
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(a) SJ-Conf query (an easy query)
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(b) SJ-Chain query (a hard query)
Figure 4.6: Setting 2: Queries with
self-joins under Bag Semantics.

growths as a fraction of the optimal.‖ We see that the solve-time of
ILP[RES∗] quickly shoots up, while LP[RES∗] and the approximations
remain PTIME. The bottom plots show a more zoomed-in look, and we
see even in the worst case instances, the approximations are only between
1.1x to 1.6x off.

Setting 2: Queries with Self-Joins under Bag Semantics. Figure 4.6 com-
pares two queries with self-joins: SJ-conf :−𝑅(𝑥, 𝑦), 𝑅(𝑥, 𝑧), 𝐴(𝑥), 𝐶(𝑧) is
easy and SJ-chain :−𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧) is hard. The stark difference in the
solve-time growth clearly indicates their theoretical complexity. While
LP-UB increases as the instance grows, it is still far from the 4-factor
bound theorized in the worst case. We see that ILP-10 remains a good
indicator for the objective value, even when the ILP takes far longer.

Setting 3: Resilience Under Set vs. Bag Semantics. Figures 4.7a and 4.7b
show 𝑄△

𝐴
, a query that contains a deactivated triad. It is easy under set

semantics and hard for bag semantics. However, surprisingly, even with a
high max bag size of 1𝑒4, we always observed LP[RES∗] = ILP[RES∗], and
the growth of ILP solve-time remained polynomial. The approximation
algorithms are slower, and almost always optimal, differing by less that
1.1× to the optimal in the worst case.

4.8.2 Key Takeaways from Experiments

We summarize the key takeaways from our experiments:

Result 1. (Scalability of ILP for PTIME Cases) For easy cases, solving our
ILP encoding is in PTIME.

‖ The optimal solve-time is LP[RES∗] and the optimal resilience is from ILP[RES∗].
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(b) Setting 3: RES(𝑄△
𝐴

) under Bag Semantics (a hard scenario)
Figure 4.7: Setting 4: RES(𝑄△

𝐴
) is easy

for sets and hard for bags.

We see the scalability of ILP for PTIME cases in Figure 4.6a. As expected,
solving the ILP formulation takes similar time as LP.‗‗ We will see in the
next chapters, that our unified approach is at times even faster than a
previously proposed dedicated flow algorithm.

Result 2. (Correctness of LP for PTIME Cases) Over all experiments,
LP[RES∗] = ILP[RES∗].

Figures 4.6a and 4.7a demonstrate the correctness of the LP relaxation
for tractable cases: all algorithms output the same RES values.

Result 3. (Scalability of ILP and its Relaxations for Hard Cases) For
hard queries, the LP relaxations always take polynomial time, whereas the
ILP solution may take exponential time. However, in practice (and in the
absence of “hardness-creating interactions” in data) the ILP can often be
solved efficiently.

Figures 4.5 and 4.6b show hard cases. The difference in solve-time is best
seen in Figures 4.5 and 4.6, where the ILP overtakes linear scalability.
However, interestingly some hard queries don’t show exponential time
complexity, and for more complicated queries it actually quite difficult to
even synthetically create random data for which solving the ILP shows
exponential growth.

Result 4. (Approximation quality) LP-UB is better in practice than the
worst-case 𝑚-factor bound. The flow based approximations give better approx-
imations, but are slower than the LP relaxation.

‗‗ We observed some very surprising cases where the ILP was consistently faster than the
LP. We learned from Gurobi Support that this may be due to optimizations applied to
the ILP that are not applied to the LP [5], and if such optimizations eliminate numerical
issues in the LP [82] such as any issues caused due to the limitations of floating-point
arithmetic.
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Figures 4.5 and 4.6b show that the results from approximation algorithms
are well within theorized bounds and run in PTIME. All approximations
are very close to the exact answer, and we need the ∆ plots in Figure 4.5
to see any difference between exact and approximate results. We observe
that in this case Flow-CW performs better than Flow-CT and is faster as
well. LP-UB is faster than the flow-based approximations but can be worse.
We also see that the LP approximation is worst when the ILP takes much
longer than the LP.

These settings help us answer another interesting question: (5) Do exper-
imental scalabilities give hints about the hardness of queries? We see a
rather surprising result.

Result 5. (Practical ILP scalability) Hard queries may or may not show
exponential time requirement in practice.

Figure 4.6b is a hard query that shows exponential growth. However,
while exponential growth of solve-time is a hint for the hardness of a
query, the converse is not necessarily true (Figure 4.7b). This explains why
our approach of using ILP to solve the problem is practically motivated:
For realistic instances, or even dense instance but more complicated
queries, scenarios where the hardness of the problem actually renders
the problem infeasible may be rare.

4.9 Chapter Summary

This chapter presented a novel way of determining the complexity of
resilience. We give a unified encoding as ILP and then investigate when
an LP approximation is guaranteed to give an integral solution, thereby
proving that modern solvers can return the answer in guaranteed PTIME.
While this approach is known in the optimization literature [145], it has
so far not been applied as proof method to establish dichotomy results
in reverse data management. Since the resulting theory is somewhat
simpler and naturally captures all prior known PTIME cases, we believe
that this approach will also help in related open problems for reverse
data management, in particular a so far elusive complete dichotomy for
resilience of queries with self-joins [60].
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How responsible is a certain cause for a particular effect? This is a
fundamental question that is studied beyond the domain of databases
and computer science. Foundational work by Halpern, Pearl, et al. [31,
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defined the concept of causal responsibility that is based minimal
interventions in the world (in our setting, the input). Meliou et al. [117]
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adapted this concept to define causal responsibility for database queries.
The definition of causal responsibility uses the same idea of minimal
interventions that we explored with resilience to provide explanations at
a more fine-grained tuple level. For any desired input tuple, users can
calculate the “responsibility” of that tuple based on the mathematical
notions of counterfactual causality. Then one can derive explanations
by ranking input tuples using their responsibilities: tuples with a high
degree of responsibility are better explanations for a particular query
result. This makes causal responsibility an invaluable tool for query
explanations and debugging.

We will see that the problem of causal responsibility is closely related to
resilience, and is in fact a strictly more complex problem. In this chapter,
we study the complexity of causal responsibility and develop a unified
algorithm to solve it.

5.1 Problem Statement

Definition 5.1.1 (Causal Responsibility [59]) Given query 𝑄 and an
input tuple 𝑡, we say that 𝑘 ∈ RSP(𝑄, 𝐷, 𝑡) if and only if 𝐷 |= 𝑄 and
there is a contingency set Γ ⊆ 𝐷 with |Γ|≤ 𝑘 such that 𝐷 − Γ |= 𝑄 but
𝐷 − (Γ ∪ {𝑡}) ̸|= 𝑄.

In other words, causal responsibility aims to determine whether a par-
ticular input tuple 𝑡 (the responsibility tuple) can be made “counterfactual”
by deleting a set of other input tuples Γ of size 𝑘 or less. Counterfactual
here means that the query is true with that input tuple present, but false
if it is also deleted. In contrast to resilience, the problem of responsibility
is defined for a particular tuple 𝑡 in D, and instead of finding a Γ that will
leave no witnesses for 𝐷 − Γ |= 𝑞, we want to preserve only witnesses
that involve 𝑡, so that there is no witness left for 𝐷 − (Γ ∪ {𝑡}) |= 𝑄.
Responsibility measures the degree of causal contribution of a particular
tuple 𝑡 to the output of a query as a function of the size of a minimum
contingency set (the responsibility set). We are again interested in the
optimization version of this problem: RSP∗(𝑄, 𝐷, 𝑡)

Note that it is possible that a given
tuple cannot be made counterfac-
tual. For example, given witnesses
{{𝑟11}, {𝑟11 , 𝑟12}}, tuple 𝑟12 cannot be
made counterfactual without deleting
𝑟11, which in turn would delete both wit-
nesses.

.

5.2 Chapter Overview and Contributions

The structure and contributions of this chapter mirror that of the previous
Chapter 4. Almost all ideas and techniques from Chapter 4 carry over
to this chapter, however, they need to be expanded to account for the
extra complexity of the causal responsibility problem. Thus, most proofs,
constructions and results in this chapter build on the results from
Chapter 4, and it is recommended to read that chapter first.
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Figure 5.1: Overview of complex-
ity results for self-join-free conjunc-
tive queries (SJ-free CQs) that fol-
low from our unified framework
in Chapters 4 and 5. Results high-
lighted with a yellow background
are new. RES stands for resilience
and RSP for causal responsibility.

Contributions and Outline. Similar to our contributions for resilience
in the previous chapter, we give new theoretical results, approximation
guarantees, and experimental results for causal responsibility.

1 Unified ILP framework: We propose an ILP formulation for the problems
of causal responsibility that builds on the ILP formulation for resilience
from Chapter 4. It still holds the same properties that can not only
encode all previously studied variants of the problem, but can also
encode all formulations of the problem, including self-joins and bag
semantics (Section 5.3). An interesting twist that arise when extending
the ILP formulation to causal responsibility is that the LP relaxation is
not sufficient to prove these unified properties but rather we need an
MILP relaxation (Section 5.4).

2 First results for causal responsibility under bag semantics: We give di-
chotomy results for causal responsibility under bag semantics for the
special case of SJ-free CQs (Section 5.5). We show that under bag seman-
tics, the PTIME cases for resilience and responsibility are surprisingly
exactly the same (Figure 5.1).

3 Recovering PTIME cases: We prove that for all prior known PTIME cases
of SJ-free queries (as well those shown to be PTIME in this chapter) (under
both set and bag semantics), our ILP is solved in guaranteed PTIME by
standard solvers (Section 5.5). This means that our formulation is unified
not only in being able to model all cases but also in that it is guaranteed
to recover all known PTIME cases by terminating in PTIME.

4 More tractable cases: Our approach can also solve causal responsibility
and resilience for otherwise hard queries in PTIME for certain types of
database instances, such as read-once instances, or instances that obey
certain Functional Dependencies (not necessarily known at the query level)
(Section 5.6). In addition, we uncover more tractable cases for causal
responsibility, due to obtaining more fine-grained complexity results
(Section 5.5).

5 Novel approximations: We observe that the three approximation algo-
rithms for resilience from Section 4.7 can be adapted to causal responsi-
bility, and that the same approximation guarantees hold (Section 5.7).

6 Experimental Study: We run similar experiments for causal responsibil-
ity as for resilience in Section 5.8. Our results establish the accuracy of
our asymptotic predictions, and show that our ILP formulation is able to
solve causal responsibility problems in practice, at times even faster than
specialized solutions.
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5.3 ILP for Causal Responsibility

The ILP for RSP builds upon ILP[RES∗] with an important additional
consideration. While the goal of ILP[RES∗] was to destroy all output
witnesses, in ILP[RSP∗(𝑄, 𝐷, 𝑡)] we must also ensure that not all the
output is destroyed. To enforce this, we need additional constraints and
additional decision variables to track the witnesses that are destroyed.

1. Decision Variables. ILP[RSP∗(𝑄, 𝐷, 𝑡)] has two types of decision vari-
ables:

(a) 𝑋[𝑡]: Tuple indicator variables are defined for all tuples in the set
of witnesses we wish to destroy.

(b) 𝑋[w]: Witness indicator variables help preserve at least 1 witness
that contains 𝑡. We track all witnesses that contain 𝑡 and set𝑋[w] = 1
if the witness is destroyed and 𝑋[w] = 0 otherwise.

2. Constraints. We deal with three types of constraints.

(a) Resilience Constraints: Every witness that does not contain 𝑡 must
be destroyed. As before, for such witnesses w𝑖 = (𝑟𝑖 , 𝑟𝑗 . . . 𝑟𝑘) we
enforce 𝑋[𝑟𝑖] + 𝑋[𝑟𝑗] + . . . + 𝑋[𝑟𝑘] ≥ 1

(b) Witness Tracking Constraints: For those witnesses that contain
𝑡, we need to track if the witness is destroyed. If any tuple that
participates in a witness is deleted, then the witness is deleted as
well. Thus, we can enforce that 𝑋[w] ≥ 𝑋[𝑡] where 𝑡 ∈ w. Notice
that we just care about tuples that need to be potentially deleted,
i.e. only tuples that occur in witnesses without 𝑡.

(c) Counterfactual Constraint: A single constraint ensures that at
least one of the witnesses that contains the responsibility tuple is
preserved. As example, if only the witnesses w1 ,w2 ,w3 contain 𝑡,
then this constraint is 𝑋[w1] + 𝑋[w2] + 𝑋[w3] ≤ 2.

3. Objective. The objective is the same as for ILP[RES∗(𝑄, 𝐷)]: we mini-
mize the number of tuples deleted (weighted by the number of occur-
rences).

Theorem 5.3.1 (ILP[RSP∗] Correctness) ILP[RSP∗(𝑄, 𝐷, 𝑡)] =RSP∗(𝑄, 𝐷, 𝑡)
of a tuple 𝑡 in database instance D under CQ 𝑄 under set or bag semantics.

Proof Intuition (Theorem 5.3.1). Like Theorem 4.3.2, we prove validity and
then optimality. We show that for any responsibility set we can assign
values to the ILP variables such that they can form a satisfying solution
(this follows from that fact that the responsibility set must preserve at
least one witness containing 𝑡).

Proof Theorem 5.3.1. Similar to Theorem 4.3.2, we show validity and opti-
mality.

▶ Proof of Validity: An invalid solution is not counterfactual, i.e.,
either it does not destroy all witnesses without 𝑡 or it destroys all
witnesses. The former violates the resilience constraints, while the
latter violates the Counterfactual constraint.

▶ Proof of Optimality: Any strictly smaller, valid responsibility set 𝑅′
can also be translated into variable assignment 𝑋̄ to 𝑋[𝑡] such that
it satisfies all constraints (where 𝑋̄[𝑡] = 1 if 𝑡 ∈ 𝑅′). Since 𝑅′ is valid,
at least one tuple for each witness that does contain 𝑡 is destroyed -
thus resilience constraints are fulfilled. There must be at least one
witness w𝑝 containing 𝑡 that is preserved. For this witness, we know
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that 𝑋[𝑤𝑝] = 0 is valid (since there is no 𝑡′ ∈ 𝑤𝑝𝑠.𝑡.𝑋[𝑡′] = 1). Thus,
the counterfactual constraint is also fulfilled since

∑
𝑋[𝑤] < |𝑊𝑝 |.

Thus, ILP[RSP∗]𝑄, 𝐷 calculates the optimal responsibility.

Example 5.3.1 Consider 𝑄∞2 :−𝑅(𝑥, 𝑦), 𝑆(𝑥, 𝑦) and database instance
Dwith 𝑅 = (1, 1), 𝑆 = {(1, 1), (1, 2), (1, 3)}.

x y z
1 1 1 w1 = {𝑟11 , 𝑠11}
1 1 2 w2 = {𝑟11 , 𝑠12}
1 1 3 w3 = {𝑟11 , 𝑠13}

How do we calculate the responsibility of 𝑠11? First, we must destroy
the two witnesses that do not contain 𝑠11 i.e. w2 and w3. The tuple
indicator variables we need are - 𝑋[𝑟11], 𝑋[𝑠12], 𝑋[𝑠13]. (Notice that
𝑠11 is not tracked itself.) Since we need to track w1 to ensure it isn’t
destroyed, we need the witness indicator variable 𝑋[w1]. The resilience
constraints are:

𝑋[𝑟11] + 𝑋[𝑠12] ≥ 1
𝑋[𝑟11] + 𝑋[𝑠13] ≥ 1

The witness tracking constraints apply only to 𝑋[w1]:

𝑋[w1] ≥ 𝑋[𝑟11]

Finally, we use the counterfactual constraint to enforce that at least one
witness is preserved. In this example, this implies directly that w1 may
not be destroyed.

𝑋[w1] ≤ 0

Solving this ILP gives us an objective of 2 when 𝑋[𝑠12] = 1 and
𝑋[𝑠13] = 1 and all other variables are set to 0. Notice that setting
𝑋[𝑟11] to 1 will force 𝑋[w1] to take value 1 and hence violate the
counterfactual constraint. Intuitively, 𝑟11 cannot be in the responsibility
set because deleting it will delete all output witnesses, and not allow
𝑠11 to be counterfactual.

5.4 PTIME Relaxation of ILP[RSP∗]

The previous section introduced unified ILPs to solve for RSP. Just like
we did for resilience, we would like to use a relaxation of the ILP to solve
the tractable cases of RSP in PTIME. For responsibility, the relaxation is
more intricate, and we need to introduce a Mixed Integer Linear Program
(MILP) MILP[RSP∗].

5.4.1 MILP Relaxation for RSP

It turns out that an LP relaxation is not optimal for PTIME cases (Ex-
ample 5.4.1). We introduce a Mixed Integer Linear Program MILP[RSP∗],
where tuple indicator variables are relaxed and take values in [0, 1]
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whereas witness indicator variables are restricted to values {0, 1}. Typi-
cally, MILPs are exponential in the number of integer variables i.e. if there
are 𝑛 integer binary variables, a solver explores 2𝑛 possible branches
of assignments. However, despite having an integer variable for every
witness that contains 𝑡 (thus up to linear in the size of the database), we
show that MILP[RSP∗] is in PTIME.

Theorem 5.4.1 (PTIME solvability of MILP[RSP∗]) For any CQ 𝑄 and tuple
𝑡, MILP[RSP∗(𝑄, 𝐷, 𝑡)] can be solved in PTIME in the size of database D.

Proof Intuition. All witness indicator variables are combined into one
counterfactual constraint. This constraint is always satisfied when any
one of the variable takes value 0, irrespective of other variable values.
Thus, we only need to explore the assignments where exactly 1 variable
takes on value 0, thus a linear number of assignments in the size of the
database.

Proof Theorem 5.4.1. Assume that there are 𝑐𝑡 witnesses that contain 𝑡.
The counterfactual constraint enforces that at least one of these witnesses
is preserved. Notice that the witness indicator variables have no effect
on the objective, and can be set to any value so long as all constraints
are fulfilled. Any assignment where 1 witness is preserved, and the rest
are destroyed fulfills all constraint (even witness tracking constraints,
which only enforce that a witness is destroyed if one of its tuples is
destroyed, but does not enforce that the witness cannot be destroyed
otherwise). Thus, we can restrict ourselves to 𝑐𝑡 potential assignments of
witness indicator variables instead of 2𝑐𝑡 . Trivially, we can now solve the
problem by running 𝑐𝑡 Linear Programs (where the only variables are
tuple indicator variables and the witness indicator variables are fixed to
one out of 𝑐𝑡 assignments). Since 𝑐𝑡 is polynomial in the database size, we
see that MILP[RSP∗] can be solved in PTIME. In practice, ILP solvers solve
the problem faster than the algorithm in the proof, since they leverage
common insights across the 𝑐𝑡 Linear Programs.

We show experimentally in Section 5.8 that a typical ILP solver indeed
solves MILP[RSP∗] in PTIME.

Example 5.4.1 Consider again the problem in Example 5.3.1. The
solution of ILP[RSP∗] was 2 at 𝑋[𝑠12] = 1, 𝑋[𝑠13] = 1 𝑋[𝑟11] = 0 and
𝑋[w1] = 0. What happens if we relax the integrality constraints and
allow 0≤ 𝑋[𝑣]≤ 1 for all variables? We can get a smaller satisfying
solution 1.5 at the point 𝑋[𝑠12] = 0.5, 𝑋[𝑠13] = 0.5 𝑋[𝑟11] = 0.5 and
𝑋[w1] = 0.5. This value is LP[RSP∗] and is not guaranteed to be equal
to ILP[RSP∗]. If we instead create MILP[RSP∗] and apply integrality
constraints only for the witness indicator variables, then 𝑋[w1] is forced to
be in {0, 1} while all other variables can be fractional. We see that the
LP[RSP∗] solution is no longer permitted, and solving MILP[RSP∗] results
in the true RSP value of 2. We show in Section 5.5 that MILP[RSP∗] =
ILP[RSP∗] for all easy cases.

5.5 Complexity results for SJ-Free CQs

This section follows a similar pattern as the previous one to prove that for
every SJ-free CQ, either MILP[RSP∗] solves RSP exactly (and the problem
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Table 5.1: Complexity Landscape for Resilience and Responsibility. All results follow from our unified framework. Results
highlighted with a yellow background are new. Some theorems apply to multiple settings (thus shown repeatedly) and
include earlier results as special cases.

Set Semantics Bag Semantics
Type of query Example RES RSP RES RSP

Linear Queries 𝑄∞2 PTIME
(thm. 4.6.1)

PTIME
(thm. 5.5.1)

PTIME
(thm. 4.6.1)

PTIME
(thm. 5.5.1)

With Only Fully Deactivated Triads 𝑄△
𝐴𝐵

PTIME
(thm. 4.6.2)

PTIME
(thm. 5.5.2)

NPC
(thm. 4.6.3)

NPC
(thm. 5.5.5)

With Only Deactivated Triads 𝑄△
𝐴

1. Dominating Relation PTIME
(thm. 5.5.3)

2. Dominated Relation NPC
(thm. 5.5.4)

With Active Triads 𝑄△ , 𝑄★
3 NPC

(thm. 4.5.3)
NPC
(thm. 5.5.5)

[117]: Meliou, Gatterbauer, Moore, and
Suciu (PVLDB, 2010), ‘The Complex-
ity of Causality and Responsibility
for Query Answers and non-Answers’.
doi:10.14778/1880172.1880176

[59]: Freire, Gatterbauer, Immerman,
and Meliou (PVLDB, 2015), ‘The Com-
plexity of Resilience and Responsibility
for Self-Join-Free Conjunctive Queries’.
doi:10.14778/2850583.2850592

[117]: Meliou, Gatterbauer, Moore, and
Suciu (PVLDB, 2010), ‘The Complex-
ity of Causality and Responsibility
for Query Answers and non-Answers’.
doi:10.14778/1880172.1880176

[117]: Meliou, Gatterbauer, Moore, and
Suciu (PVLDB, 2010), ‘The Complex-
ity of Causality and Responsibility
for Query Answers and non-Answers’.
doi:10.14778/1880172.1880176

is hence easy), or we can form an ĲP for RSP. We also compare the
complexity of RSPwith the complexity of RES in Table 5.1.

Theorem 5.5.1 (Integrality of MILP[RSP∗] for Linear Queries) For all
database instances D under set or bag semantics, MILP[RSP∗(𝑄, 𝐷, 𝑡)] =
RSP∗(𝑄, 𝐷, 𝑡) if 𝑄 is linear.

Proof Intuition (Theorem 5.5.1). Prior work [117] solves responsibility by
solving the min-cut problem for multiple flow graphs, by creating one
flow graph for each witness containing 𝑡. We prove a correspondence
between all valid MILP[RSP∗] solutions and valid cuts of the flow graphs,
thereby showing that both approaches lead to identical solutions.

Proof Theorem 5.5.1. Let 𝑋𝑚 be an optimal variable assignment generated
by solving MILP[RSP∗(𝑄, 𝐷, 𝑡)]. There must be at least one witness𝑤𝑝 ∈ 𝐷
such that 𝑡 ∈ 𝑤𝑝 and 𝑋𝑚[𝑤𝑝] = 0 i.e. the witness is not destroyed (this
follows from the fact that all witness variables take values in {0, 1} and
the counterfactual clause enforces that they all cannot take value 1). For
such a witness, any tuple 𝑡 ∈ 𝑤𝑝 , must have 𝑋[𝑡] = 0 since it satisfies the
witness tracking constraints. We also know that since 𝑄 is a linear query,
the witnesses can be encoded in a flow graph to find the responsibility
[59, 117]. We can map the values of 𝑋𝑚 to the flow graph, where 𝑋𝑚[𝑡]
now denotes if an edge in the flow graph is cut or not. Consider 𝑋𝑚[𝑡] = 0,
since it is not modeled in MILP[RSP∗]. We see that this disconnects all
paths in the graph (since paths that do not contain 𝑡 are disconnected by
virtue of the resilience constraints of MILP[RSP∗]). If we set the weight of
all tuples in 𝑤𝑝 to∞, the cut value does not change since these tuples
were not part of the cut. Prior work [117] has shown that RSP(𝑄, 𝐷) for
linear queries can be calculated by taking the minimum of minimum cuts
of all flow graphs such that have 1 of witnesses that contains 𝑡, has weight
of all other tuples edges set to ∞. Thus, MILP[RSP∗(𝑄, 𝐷, 𝑡)] is at least
as much as the responsibility computed by a flow graph. In addition to
this, the flow graph with the smallest cut also fulfills all the solutions for
MILP[RSP∗] (since at least one witness containing 𝑡 is preserved, and all
witnesses not containing 𝑡 are cut). Thus, the optimal value of RSP(𝑄, 𝐷, 𝑡)
can be mapped back to a MILP[RSP∗] assignment.
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Theorem 5.5.2 (Integrality of MILP[RSP∗] with fully deactivated tri-
ads under set semantics) MILP[RSP∗(𝑄, 𝐷, 𝑡)] = RSP∗(𝑄, 𝐷, 𝑡) for any
database D under set semantics if all triads in 𝑄 are fully deactivated.

Proof Intuition (Theorem 5.5.2). This follows from the fact that fully deacti-
vated triads can be linearized without changing the optimal solution [59]
and Theorem 5.5.1.

Proof Theorem 5.5.2. Assume 𝑄 contains a triad with tables 𝑅, 𝑆, 𝑇. How-
ever, since the triad is fully deactivated, at least one of these tables
must be dominated by set of tables 𝐴1 , 𝐴2 . . .. W.l.o.g., assume 𝑅 is fully
dominated. We show that 𝑅 can be made exogenous because there exists
an optimal responsibility set that does not contain any tuple from 𝑅. If
𝑟𝑖 is part of the responsibility set, then it can be replaced with 𝑎𝑖 where
𝑎𝑖 ⊂ 𝑟𝑖 while still destroying the same or more witnesses. However, it is
still possible that including 𝑎𝑖 in the responsibility set may destroy all
witnesses. This is possible only if 𝑎𝑖 dominates 𝑡 as well. If all 𝑎𝑖 such that
𝑎𝑖 ⊂ 𝑟𝑖 dominate 𝑡, then it must be that 𝑟𝑖 dominates 𝑡 (since 𝑟𝑖 is fully
dominated and uniquely determined by the tuples that dominate it). It
is not possible for such an 𝑟𝑖 to be in the responsibility set as it would
destroy all witnesses containing 𝑡. Thus, no tuple from 𝑅 can be used in
the responsibility set, the size of the responsibility set will not change if
we make 𝑅 exogenous i.e. add all the variables of the query to 𝑅. Let 𝑄′
be the query where for each deactivated triad, all fully dominated tables
have been made exogenous. Then RSP(𝑄′ , 𝐷, 𝑡) = RSP(𝑄, 𝐷, 𝑡). 𝑄′ is
linear, and we can then use Theorem 5.5.1 to show that MILP[RSP∗(𝑄, 𝐷)]
is optimal.

Theorem 5.5.3 (Integrality of MILP[RSP∗] when responsibility tuple is in
dominating relation) LP[RSP∗(𝑄, 𝐷, 𝑡)] = RSP∗(𝑄, 𝐷, 𝑡) for all database
instances D under set semantics if 𝑄 does not contain any active triad and 𝑡
belongs to an atom that dominates some atom in all deactivated triads in 𝑄.

Proof Intuition (Theorem 5.5.3). We prove that in every deactivated
triad dominated by 𝐴, it is always safe to make the dominated table
𝑅 exogenous since any tuple from 𝑅 in the responsibility set is either
replaceable, or invalid. This linearizes the query, and the rest follows
from Theorem 5.5.1. Notice that prior work [59] identified as tractable
cases those without any active triad, which a special case of our more
general tractable cases.

Proof Theorem 5.5.3. Let 𝑅 be the table in a deactivated triad that 𝐴
dominates. We show that no tuple of 𝑅 is required in the responsibility
set, and we can make it exogenous. If some 𝑟𝑖 is in the responsibility
database, it can be replaced with some 𝑎𝑖 if the variables and valuation of
𝑎𝑖 are a strict subset of 𝑟𝑖 and then 𝑎𝑖 deletes all the witnesses as before,
and potentially some more. This is permitted unless removal of 𝑎𝑖 deletes
all witnesses containing 𝑡 as well. However, since 𝑎𝑖 and 𝑡 belong to the
same table, this is not possible. Thus, at least one table from each triad
can be made exogenous, and the query can be replaced with a linear
query.
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S(k!, k")
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T(a, k")R(a, k!) T(b, k#) R(b, k$) Figure 5.2: ĲP for RSP(𝑄△
𝐴

) for tables
𝑅, 𝑆 and 𝑇

[59]: Freire, Gatterbauer, Immerman,
and Meliou (PVLDB, 2015), ‘The Com-
plexity of Resilience and Responsibility
for Self-Join-Free Conjunctive Queries’.
doi:10.14778/2850583.2850592

Theorem 5.5.4 (Hardness of RSP for tuples in not fully deactivated
triads) RSP(𝑄, 𝐷, 𝑡) is NPC if 𝑡 belongs to an atom that is part of a triad
that is not fully deactivated.

Proof Intuition (Theorem 5.5.4). The key principle behind this proof
is our more fine-grained notion of exogenous tuples. A tuple 𝑎 such
that 𝑎 has all the same values for the same variables as 𝑡 and var(𝑎) ⊆
var(𝑡) is necessarily exogenous since it is not possible for 𝑡 to become
counterfactual if 𝑎 is removed.

Proof Theorem 5.5.4. If T is part of an active triad, the same ĲP as RES is
proof for this theorem. However, if 𝑇 is part of a deactivated triad, then
we need to slightly modify the hardness proof. Let 𝐴 be the table that
dominates one of the tables in the deactivated triad. In our ĲP we ensure
that an atom from 𝐴 is an exogenous tuple- one that cannot be deleted. This
is possible by constructing an 𝑎𝑖 that dominates 𝑡. Since this is always
possible, we can now construct the rest of the ĲP. We connect a witness
containing 𝑎0 to two others by using two tables of the deactivated triad.
Then we finally add two more witnesses to the triad with the common
tuple being the third table of the deactivated triad. We treat the 𝐴 table
as the endpoints of the ĲP. Since 𝑎𝑖 is exogenous, the gadget must choose
between the first or the second table to destroy all witnesses in the ĲP.
Such a gadget does not form new witnesses when composed as well as
any two isomorphs share only tuples from 𝐴.

In Figure 5.2, we show an example for the ĲP that greatly simplifies the
previous hardness gadget (the earlier gadget was a reduction from 3𝑆𝐴𝑇
whose variable gadget had 80 witnesses)

Theorem 5.5.5 (RSP is harder than RES) If RES(𝑄) is NPC for a query 𝑄
under set or bag semantics then so is RSP(𝑄).

Proof Intuition (Theorem 5.5.5). We give a reduction from RES(𝑄) to
RSP(𝑄) in both set and bag semantics by adding a witness to the given
database instance and selecting a tuple whose responsibility is equal
the resilience of the original instance. Our approach extends a prior
result [59] that applied only to set semantics.

Proof Theorem 5.5.5 . Consider an arbitrary database instance D and add
all tuples from a witness 𝑤𝑟 that is disjoint from all tuples in D. The
responsibility of the resulting database instance is simply the resilience
of D (since all witnesses in Dmust be destroyed, and the other single-
ton witness must be preserved). Thus, we can reduce RSP(𝑄, 𝐷, 𝑡) to
RES(𝑄, 𝐷) and RSP(𝑄) must be hard whenever RES(𝑄) is.
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[35]: Crama and Hammer (2011), Boolean
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doi:10.1017/cbo9780511852008.003

[74]: Golumbic and Gurvich
(2011), ‘Read-once functions’.
doi:10.1017/cbo9780511852008.011

[75]: Golumbic, Mintz, and Rotics (JDAM,
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read-once functions using cographs
and normality and the readability of
functions associated with partial k-trees’.
doi:10.1016/j.dam.2005.09.016

These results imply the following dichotomies under both set and bag
semantics:

Corollary 5.5.6 (Causal Responsibility Dichotomy under set semantics)
Under set semantics, RSP(𝑄, 𝐷, 𝑡) is in PTIME for queries that contain only
fully deactivated triads or deactivated triads that are dominated by the relation
of 𝑡, otherwise it is NPC.

Corollary 5.5.7 (Causal Responsibility Dichotomy under bag semantics)
Under bag semantics, RSP(𝑄, 𝐷, 𝑡) is in PTIME for queries that do not contain
any triads, otherwise it is NPC.

Notice that the tractability frontier for bag semantics notably differs from
set semantics, where the tractable cases for RSP(𝑄) are a strict subset of
those for RES(𝑄). For bags, they coincide:

Corollary 5.5.8 (Tractable cases of RES and RSP coincide under bag
semantics) Under bag semantics, the tractable cases for RSP(𝑄) are exactly
the same as for RES(𝑄).

5.6 Additional Instance Based Complexity
Results for Resilience and Causal
Responsibility

We give here two cases for when our unified algorithm is guaranteed to
terminate in PTIME for generally hard queries - for both resilience and
causal responsibility. The interesting aspect is that our unified algorithm
terminates in PTIME if the database instance fulfills those conditions, but
the algorithm does not need to know about these conditions as input, it just
automatically leverages those during query time. We believe that this
really shows the power of our unconventional approach of proposing
one unified approach for all problems and then proving termination
in PTIME for increasing number of cases (instead of starting from a
dedicated PTIME solution for special cases).

Read-Once Instances. We show that database instances which allow a
read-once factorization of the provenance for a given query are always
tractable. A Boolean function is called read-once if it can be expressed as a
Boolean expression in which every variable appears exactly once [35, 74,
75]. We call a database D read-once instance for query 𝑄 if the provenance
of the query over D can be represented by a read-once expression.

Theorem 5.6.1 (Integrality of MILP[RSP∗] for read-once instances)
LP[RES∗] and MILP[RSP∗] always have optimal, integral solutions under
set or bag semantics for all database instances D that are read-once for query
𝑄.

Proof Theorem 5.6.1. We use a structural property of the constraint matrix
of the LP to show that LP[RES∗(𝑄, 𝐷)] = RES(𝑄, 𝐷). A {0, 1}-matrix 𝑀
is balanced iff 𝑀 has no square submatrix of odd order, such that each
row and each column of the submatrix has exactly two 1s. If a matrix
𝑀 is balanced, then the polytope 𝑀𝑥 ≥ 1 is Total Dual Integral (TDI),
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doi:10.1007/978-0-387-39940-9_1247

[59]: Freire, Gatterbauer, Immerman,
and Meliou (PVLDB, 2015), ‘The Com-
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doi:10.14778/2850583.2850592

[59]: Freire, Gatterbauer, Immerman,
and Meliou (PVLDB, 2015), ‘The Com-
plexity of Resilience and Responsibility
for Self-Join-Free Conjunctive Queries’.
doi:10.14778/2850583.2850592

which means all vertices of the polytope are integral [144]. For such a
system, the optimal Linear Program solution will always have an Integral
solution. We first show that the constraint matrix of LP[RES∗(𝑄, 𝐷)] is
0, 1-balanced when D is read-once. A 0, 1 balanced matrix is one that
does not contain any odd square submatrix having all row sums and all
column sums equal to 2.

Assume the constraint matrix is unbalanced. Then there must be a set
of witnesses (𝑤1, 𝑤2, 𝑤3 . . .) such that 𝑤1 and 𝑤2 share tuple 𝑡1 but not
𝑡2, and 𝑤2 and 𝑤3 share 𝑡2. This defines a 𝑃4, which is not permitted
in a read-once instance. Thus, the constraint matrix is balanced and
LP[RES∗(𝑄, 𝐷)] = RES(𝑄, 𝐷).

Now for ILP[RSP∗(𝑄, 𝐷, 𝑡)], if there is a tuple 𝑥 that exists in a witness
with 𝑡 (𝑤𝑖) as well as in a witness without 𝑡 (𝑤 𝑗), then 𝑥 must exist in all
witnesses (𝑤𝑘 . . .) containing 𝑡 to prevent the formation of a 𝑃4. (There
would be a𝑃4 as𝑤𝑘 and𝑤𝑖 share 𝑡,𝑤𝑖 and𝑤 𝑗 share 𝑥 but𝑤𝑘 and𝑤 𝑗 do not
share 𝑡 or 𝑥.) If 𝑥 participates in all witnesses containing 𝑡 it cannot be part
of the responsibility set as it would violate the counterfactual constraint
by preserving no witnesses. Hence, the responsibility set consists wholly
of tuples that do not interact with 𝑡 and the problem reduces to resilience,
which we know is PTIME for read-once instances.

Functional Dependencies (FDs). A Functional Dependency (FD) is a
constraint between two sets of attributes 𝑋 and 𝑌 in a relation of a
database instance D. We say that 𝑋 functionally determines 𝑌 (𝑋 → 𝑌)
if whenever two tuples 𝑟1 , 𝑟2 ∈ 𝑅 contain the same values for attributes
in 𝑋, they also have the same values for attributes in 𝑌 [104]. Prior work
introduced an induced rewrites procedure [59] which, given a set of FDs,
rewrites a query to a simpler query without changing the resilience or
responsibility. If the query after an induced rewrite is in PTIME, then the
original could be solved after performing a transformation. We prove
that any instance that is PTIME after an induced rewrite is automatically
easy for our ILPs. Thus, if there are undetected FDs in the data that would
allow a PTIME rewrite, our framework guarantees PTIME performance,
while prior approaches would classify it as hard.

Theorem 5.6.2 (Integrality of MILP[RSP∗] with certain functional depen-
dencies) Let 𝑄′ be the induced rewrite of 𝑄 under a set of FDs. If RES(𝑄′)
or RSP(𝑄′) are in PTIME under set or bag semantics then LP[RES∗] and
MILP[RSP∗] always have optimal integral solutions under the same semantics.

Proof Theorem 5.6.2. Prior work [59] showed that FDs can make things
easy and be used to transform non-linear queries to linear queries. We
can make the same argument as Theorem 5.5.1 to show that LP[RES∗(𝑄)]
or MILP[RSP∗(𝑄)] cannot be smaller than the resilience or responsibility
respectively found by the min-cut algorithm of the flow graph produced
by the query after linearization.

5.7 A note on Approximation Algorithms

All three approximation algorithms for resilience from Section 4.7 can be
trivially applied to causal responsibility as well. It is interesting however,
to note that the approximation guarantees for resilience (shown for the
LP based approximation algorithm) also hold for causal responsibility.
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Theorem 5.7.1 (m-factor approximation for RSP) The LP Rounding
Algorithm is a PTIME 𝑚-factor approximation for RSP.

Proof Theorem 4.7.1. We can assume the correctness of the approximation
for RES as shown in Theorem 4.7.1. Now to prove the correctness of
the approximation for MILP[RSP∗] as well, we need to verify the extra
constraints. We must ensure that the resultant variable assignment fulfills
the Counterfactual Constraints to ensure that not all witnesses are deleted.
However, since in the Mixed ILP, the witness variables already took on
integral values, there was at least one witness 𝑤𝑝 containing 𝑡 such that
𝑋[𝑤] = 0. This implies that in the MILP, all tuples 𝑡 in 𝑤𝑝 have 𝑋 𝑓 [𝑡] = 0.
They will stay 0 after rounding as well, and thus the Witness Tracking
Constraints and Counterfactual Constraint are still satisfied.

5.8 Experiments

We evaluate our algorithms for causal responsibility with the exact same
experimental setup as in Section 7.12, but now with TPC-H data [152]. We
use the TPC-H data generator at logarithmically increasing scale factors,
creating 18 databases ranging from scale factor 0.01 to 1.
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(b) 5 Cycle Query 𝑄◦5 (a hard query) Figure 5.3: TPC-H data with FDs.

Causal Responsibility Scalability With TPCH Data. Figure 5.3 shows
results for the 5-chain query 𝑄∞5 :− Customer(custname, custkey), Or-
ders(custkey, orderkey), Lineitem(orderkey, psid), Partsupplier(id, supp-
key) and 5-cycle query𝑄◦5 :− Customer(custname, custkey), Orders(custkey,
orderkey), Lineitem(orderkey, psid), Partsupplier(id, suppkey), Sup-
plier(suppkey, suppname) over TPC-H data. While in general 𝑄◦5 is NPC,
a careful reader may notice that all the joins have primary-foreign key
dependencies. We do not inform our algorithms about these depen-
dencies nor make any changes to accommodate them. Yet the solver is
able to leverage the dependencies from the data instance and ILP[RES∗]
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scales in PTIME, and we see that the ILP is faster than the both dedicated
flow algorithm and flow approximation, respectively. In both cases, all
algorithms (exact and approximate) return the correct responsibility.

We observe similar trends as in Section 7.12.

Result 6. (Scalability of ILP for PTIME Cases) For easy cases, solving our
ILP encoding is in PTIME and at times even faster than a previously proposed
dedicated flow algorithm.

We see the scalability of ILP for PTIME cases in Figure 5.3a. As ex-
pected, solving the ILP formulation takes similar time as LP. We see that
Gurobi can solve responsibility around 12 times faster for a PTIME query
(Figure 5.3a) than the previously proposed flow encoding.

Result 7. (Correctness of LP for PTIME Cases) Over all tractable instances,
MILP[RSP∗] = ILP[RSP∗].

Figure 5.3a corroborate the correctness of the MILP relaxation for PTIME
queries, as expected due to the theorems proved in Section 5.5.

Result 8. (Scalability of ILP and its Relaxations for Hard Cases) For
hard queries, we observe that the time taken by the MILP relaxations grows
polynomially, while the time taken by the ILP solution grows exponentially.
However, in practice (ain the presence of functional dependencies), the ILP
can often be solved efficiently.

Figure 5.3b shows a hard query. Interestingly, it does not show exponential
time complexity. This can be explained by the fact that the ILP solver is
able to leverage the dependencies in the data instance, and thus solve the
problem in PTIME.

5.9 Chapter Summary

In this chapter, we saw that the ideas of unified ILP encodings can be
extended beyond the simple problem of resilience to the more involved
problem of causal responsibility. In particular, rather than seeing a
problem instance solvable by an LP relaxation (with equivalence to a
minimum cut in a flow graph), we need to see the problem instance
as a PTIME solvable MILP problem (corresponding to minimum cut in
multiple flow graphs). In the next chapter, we will see how the same ideas
can be extended to an entire class of RDM problems, namely deletion
propagation problems.

45



Generalized Deletion
Propagation 6

6.1 Chapter Overview and
Contributions . . . . . . . 48

6.2 Problem Statement . . . . 49
6.3 ILP Framework for GDP 53
6.4 Recovering Existing

Tractability Results . . . . 62
6.5 New Tractability Results 69
6.6 Experiments . . . . . . . . 70
6.7 A Note on System Imple-

mentation . . . . . . . . . . 76
6.8 Chapter Summary . . . . 77

This chapter is based on: Neha
Makhĳa and Wolfgang Gatterbauer.
2025. Is Integer Linear Programming
All You Need for Deletion Propaga-
tion? A Unified and Practical Approach
for Generalized Deletion Propagation.
PVLDB [112]. Code is available on-
line: https://github.com/north
eastern-datalab/generalized-d
eletion-propagation

Deletion Propagation (DP) was proposed as early as 1982 [44]

[44]: Dayal and Bernstein (TODS, 1982),
‘On the Correct Translation of Up-
date Operations on Relational Views’.
doi:10.1145/319732.319740

and cor-
responds to the basic view-update problem: Assume we want to delete a
given tuple from a view, which tuples should we to delete from the database to
accomplish this goal? Since different tuples in the view may be generated
from the same tuple in the source database, deleting tuples from the
source can have additional “side effects” beyond the user-requested
deletion. Thus, the problem is not only to determine tuples to delete from
the source such that the requested view deletion is achieved, but also to
minimize other possible side effects, leading to a combinatorial optimiza-
tion problem. Different choices about what constitutes a “side effect” and
different optimization goals have lead to several well-motivated variants
of Deletion Propagation being proposed and studied over the last 40+
years. These variants have found a variety of applications, including
query explainability and debugging.

“Side effects” are usually measured in the number of tuples affected by a
modification. Two important types of side effects that have been studied
are source side effects [23, 44, 30pt] and view side effects [23, 101, 102]

[23]: Buneman, Khanna, and Tan (PODS,
2002), ‘On Propagation of Deletions
and Annotations Through Views’.
doi:10.1145/543613.543633

[101]: Kimelfeld (PODS, 2012), ‘A Dichotomy
in the Complexity of Deletion Propa-
gation with Functional Dependencies’.
doi:10.1145/2213556.2213584

[102]: Kimelfeld, Vondrák, and Williams
(TODS, 2012), ‘Maximizing Conjunc-
tive Views in Deletion Propagation’.
doi:10.1145/2389241.2389243

:
Source side effects (DP-SS) measure the number of tuples deleted from the
source database to fulfill the user request, while view side effects (DP-VS)
measure the number of unintended tuples deleted from the same view. A
recent variant on the DP-SS problem is the aggregated deletion propagation
(ADP-SS) problem [94]

[94]: Hu, Sun, Patwa, Panigrahi, and Roy
(PVLDB, 2020), ‘Aggregated Deletion Propaga-
tion for Counting Conjunctive Query Answers’.
doi:10.14778/3425879.3425892

in which a certain number of tuples should be
deleted from the view, but it is not specified which tuples. A different,
seemingly unrelated problem is the recently proposed smallest witness
problem (SWP) [93, 121]

[93]: Hu and Sintos (ICDT, 2024), ‘Finding
Smallest Witnesses for Conjunctive Queries’.
doi:10.4230/LIPIcs.ICDT.2024.24

[121]: Miao, Roy, and Yang (SIGMOD, 2019),
‘Explaining Wrong Queries Using Small Exam-
ples’. doi:10.1145/3299869.3319866

, where a user would like to preserve the view as is,
but delete as many tuples from the source as possible. Although SWP has
so far not been understood to be a variant of DP, we show that is problem
shares the same structure as other DP problems, can be solved using the
same techniques, and – when combined with other DP problems – opens
up a new space of natural DP variants.

Despite the long history of Deletion Propagation, at least 3 challenges
remain. This chapter shows that these 3 challenges can be largely ad-
dressed by casting the existing problems as special cases of a unified
general “General Deletion Propagation” framework.

Challenge 1: Countless well-motivated variants. DP has been studied
in many forms over the last 40+ years. However, one can imagine many
more variants that are all well-motivated, and that have not yet been
studied. These variants can arise from different definitions of side effects,
different constraints on allowed side effects, and different optimization
goals. Example 6.0.1 gives just one such example of DP that has not been
described by prior work (we explore the wider space of variants more
thoroughly in Section 6.2).

Example 6.0.1 An airline company wants to cut costs by reducing the
number of flights it offers, and reduce its total operational expenditure
by at least 2%. There are various types of costs incurred by the flight
company, such as the fuel cost of the flight and the airport fee at
the locations they operate at. While cutting costs, the airline wants
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(0,1)-hop
connections Expenses

Delete ≥ 2% of 
expenditure 

Preserve all popular  
connections

Minimize removal of 
connected locations

Popular (0,1)-hop
connections Figure 6.1: Example 6.0.1: A motivat-

ing example for Generalized Dele-
tion Propagation (GDP) that extends
previously studied DP variants.

[102]: Kimelfeld, Vondrák, and Williams
(TODS, 2012), ‘Maximizing Conjunc-
tive Views in Deletion Propagation’.
doi:10.1145/2389241.2389243

to ensure that it minimizes the effect on its connectivity network i.e.
pairs of locations that are connected directly or via 1 layover called
“(0, 1)-hop connections.” Additionally, the airline would like to ensure
that it maintains a profitable service and so it would like to preserve
of all of its most popular connections.

This problem has all the ingredients of a Deletion Propagation problem:
the source database is the set of all flights and airports; the view is the
set of all location pairs that have direct or 1-hop connection between
them. The airline would like to delete a certain amount of flight and
airport costs (corresponding to cancelling flights, and not having
service to an airport) - but it would like to minimize the side effect
on the view (the connectivity network) and preserve output tuples
of a different view (that shows the most popular connections). This
problem is a mixture of Aggregated Deletion Propagation (which
involves deleting an arbitrary fraction of a view), and the Smallest
Witness Problem (which involves preserving a view), but is also an
extension in many ways (discussed further in Section 6.3). For example,
the side effects are not measured in the original source or view, but in
a different view (!).

Challenge 2: Dissimilar algorithms for similar problems. Since DP
variants have been studied in isolation, the algorithms used to solve these
problems are often dissimilar - ranging from dynamic programming-
based approaches to flow-based algorithms. Even for one variant, different
queries currently require different algorithms. Thus, new variants are
often solved “from scratch” and algorithmic insights are not carried
over. DP variants are NPC (NP-complete) in general, but are PTIME for
certain queries. To solve DP for a query optimally, one needs to know
the algorithm that can correctly solve the problem variant for the given
query in PTIME (if such an algorithm exists), and know that the query
and database fulfill the requirements that allow applying the specialized
algorithm. Since algorithms that are specific to the variant and query, they
are not generalizable, easily implementable, or extensible to new variants
and query classes. As discussed in the introduction of this dissertation,
we propose a unified “coarse-grained instance optimal” framework. Our
framework includes all previously studied DP variants, including even
problems that were not previously phrased as DP (SWP), and new variants
as well.

Challenge 3: Algorithms and tractability criteria are unknown for many
real-world queries and scenarios. DP problems are typically studied for
self-join-free conjunctive queries under set semantics, because queries
with self-joins are known to be notoriously difficult to analyze, and
several complexity boundaries have been open for over a decade [102].
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doi:10.1145/2213556.2213584

[17]: Bodirsky, Semanisinová, and Lutz (LICS,
2024), ‘The Complexity of Resilience Problems
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doi:10.1145/3661814.3662071

[110]: Makhĳa and Gatterbauer (SIGMOD,
2023), ‘A Unified Approach for Resilience
and Causal Responsibility with Integer Lin-
ear Programming (ILP) and LP Relaxations’.
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In practice, however, queries often contain unions, are not self-join-free,
and are executed under bag semantics. Only very few algorithms and
tractability results are known for these more complicated settings, such
as for queries with self-joins [60, 101], unions of conjunctive queries [17],
and queries under bags semantics [110]. The overall tractability criterion
for queries for such “real-world” queries is overall ill-understood.

6.1 Chapter Overview and Contributions

We solve the challenges outlined above by introducing a unified frame-
work for Deletion Propagation (DP) problems. We define Generalized
Deletion Propagation (GDP), show that this definition encapsulates ex-
isting variants as well many natural new variants, and give a unified
algorithm to solve GDP. In the process, we recover known tractability
results, derive new theoretical results, and provide an experimental
validation.

1 We define Generalized Deletion Propagation (GDP) in Section 6.2.
This definition not only covers all known DP variants, but also includes
the Smallest Witness Problem (SWP, which has so far been treated
as completely different), and covers new well-motivated variants. Our
definition allows us to reason about the many DP variants systematically,
thus addressing Challenge 1.

2 We present an Integer Linear Programming (ILP) formulation for the
GDP problem in Section 6.3. This formulation allows us to use one solution
for all variants of DP, thus providing the first step in addressing Challenge
2. The ILP formulation can cover queries with unions and self-joins, and
both the set and bag semantics settings, thus giving a valuable tool to
address Challenge 3.

3 While providing ILP formulations is a typical approach for solving
NPC optimization problems, our key technical contribution addressing
Challenge 3 is proposing an ILP with the right algorithmic properties: We
show in Section 6.4 that for all known PTIME cases, our ILP formulation is
solvable in PTIME via an LP relaxation. Thus, we do not need dedicated
PTIME algorithms for special cases; our theory shows that standard ILP
solvers default to solving these cases in PTIME. This means that the ILP
framework can be directly used to solve all tractable instances of DP, thus
resolving Challenge 2 for all known PTIME cases. Notice that it is not
trivial to come up with the right ILP formulation. We show that a more
obvious ILP formation does not have the desired PTIME guarantees, and
can be over 2 orders of magnitude slower in practice.

4 We uncover a new tractable case for well-known variants of the DP
problem, thus showing that our framework is a powerful tool to address
Challenge 3, the long-standing open challenge of capturing the exact
tractability boundary. Concretely, we prove in Section 6.5 that the ILP
formulation of a query with union and self-join that can be solved in
PTIME under bag semantics.

5 We experimentally evaluate the efficiency of our contributions in
Section 6.6. Our approach performs comparably and sometimes even
better than specialized algorithms for particular DP variants, and can
solve new tractable cases that were not previously known.
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Figure 6.2: Generalized Deletion Propagation (GDP) is defined over 4 different sets of views, two of which model hard
constraints, and the other two model soft constraints (optimization objectives). Our approach encapsulates previously
studied NPC variants of the deletion propagation problem as special cases: Deletion Propagation with Source Side Effects
(DP-SS) [44], Deletion Propagation with View Side Effects (DP-VS) [103], Aggregated Deletion Propagation with Source
Side Effects (ADP-SS) [94], Smallest Witness Problem (SWP) [93]. Notice that GDP is a generalization of the prior variants in
multiple senses: 1) It allows for side effects on a view different from the original. 2) It allows each type of constraint to be
enforced over multiple views. 3) It allows for a combination of constraints and measured side effects.

6.2 Problem Statement

We introduce Generalized Deletion Propagation (GDP) which general-
izes all prior variants of deletion propagation, but also allows for new
variants to be defined. The new variants are motivated by the following
observations:

1. The number of deletions in the source or view are not the only
two possible side effects; one could also care about side effects on
another view that is different from the one in which the deletion
occurs (then the source tables can simply be considered just another
set of views).

2. It is natural to enforce constraints or optimize side effects over
multiple views.

3. Prior variants focus on a specific type of side effect (either source
or view) and a specific type of constraint (either deletion or preser-
vation). In practice, one might want to combine these constraints
and side effects (e.g., minimizing deletions from one view while
maximizing deletions from another). All three of these extensions
are motivated with examples in Subsection 6.2.3.

We observe that with 4 different sets of views, we can model the whole
range of existing problems and can also combine individual constraints in
arbitrary ways. Definition 6.2.1 thus defines generalized deletion propagation
as a constraint optimization problem over four set of views. These sets
of views correspond to four primitive operations that typically occur
in deletion propagation variants - a requirement to delete tuples from
a view, a requirement to preserve tuples in a view, a requirement to
minimize side effects on a view, and a requirement to maximize side
effects on a view. Subsection 6.2.2 discusses how the GDP definition
encapsulates all past variants of DP as special cases (also depicted in
Figure 6.2), while Subsection 6.2.3 motivates new variants of DP that are
captured by the GDP framework.
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[23]: Buneman, Khanna, and Tan (PODS,
2002), ‘On Propagation of Deletions
and Annotations Through Views’.
doi:10.1145/543613.543633

6.2.1 Defining Generalized Deletion Propagation

Before we define GDP, we introduce some notation. We use bold notation
for vectors (as in x) and superscript for entries (as in 𝑥 𝑖). Q represents an
ordered set of queries, and 𝑄 𝑖 represents the 𝑖th query in Q. |𝑄(D)| is
defined as the number of output tuples in𝑄(D) and |Q(D)|= ∑

𝑄∈Q|𝑄(D)|
as the number of output tuples across all views in Q. We define ∆𝑄(D, Γ)
as the set of output tuples in 𝑄(D) that are deleted as a consequence of
deleting Γ from the database D and hence are not present in 𝑄(D \ Γ).
Similarly, we define ∆Q(D, Γ) as the set of tuples deleted from all views
in Q:

|∆Q(D, Γ)|=
∑
𝑄 𝑖∈Q
|𝑄 𝑖(D)|−|𝑄 𝑖(D\ Γ)|

Definition 6.2.1 (Generalized Deletion Propagation (GDP)) Given
four ordered sets of monotone queries Qdel , Qpres , Qmin and Qmax over a
database D, and vectors of positive integers kdel and kpres of size equal to
the number of views in Qdel and Qpres respectively, the GDP problem is
the task of determining a set of input tuples Γ ⊆ D such that

|∆Qmin(D, Γ)|−|∆Qmax(D, Γ)|

is minimized and the following hard constraints are satisfied:

1. Deleting Γ from the database D deletes at least 𝑘 𝑖
del

output tuples from
the 𝑖th view defined by Qdel for all 𝑖 i.e.,

|𝑄 𝑖
del(D\ Γ)|≤ |𝑄 𝑖

del(D)|−𝑘 𝑖del

2. Deleting Γ from the database D preserves at least 𝑘 𝑖pres output tuples
from the 𝑖th view defined by Qpres for all 𝑖 i.e.,

|𝑄 𝑖
pres(D\ Γ)|≥ 𝑘 𝑖pres

6.2.2 Capturing Prior Variants of Deletion Propagation
with GDP

We next show how each of the previously studied variants of the deletion
propagation problem is a special case of GDP.

Deletion Propagation with Source Side Effects (DP-SS) [23, 44] and
Resilience (RES) [17, 59, 60, 110, 120]

Deletion Propagation with source side effects (DP-SS) is one of the two orig-
inally formulated variants of the deletion propagation problem [23].

Definition 6.2.2 (DP-SS) Given a view defined by a query 𝑄 over a database
D, and an output tuple 𝑡 ∈ 𝑄(D), the deletion propagation with source side
effects problem is the task of determining a set of input tuples Γ ⊆ D such
that |Γ| is minimized and 𝑡 is not contained in 𝑄(D\ Γ). In other words,

min|Γ| s.t. 𝑡 /∈ 𝑄(𝐷 \ Γ)
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[59]: Freire, Gatterbauer, Immerman,
and Meliou (PVLDB, 2015), ‘The Com-
plexity of Resilience and Responsibility
for Self-Join-Free Conjunctive Queries’.
doi:10.14778/2850583.2850592

[17]: Bodirsky, Semanisinová, and Lutz (LICS,
2024), ‘The Complexity of Resilience Problems
via Valued Constraint Satisfaction Problems’.
doi:10.1145/3661814.3662071

[59]: Freire, Gatterbauer, Immerman,
and Meliou (PVLDB, 2015), ‘The Com-
plexity of Resilience and Responsibility
for Self-Join-Free Conjunctive Queries’.
doi:10.14778/2850583.2850592

[60]: Freire, Gatterbauer, Immerman, and
Meliou (PODS, 2020), ‘New Results for
the Complexity of Resilience for Binary
Conjunctive Queries with Self-Joins’.
doi:10.1145/3375395.3387647

[110]: Makhĳa and Gatterbauer (SIGMOD,
2023), ‘A Unified Approach for Resilience and
Causal Responsibility with Integer Linear
Programming (ILP) and LP Relaxations’.
doi:10.1145/3626715

[120]: Miao, Li, and Cai (TCS, 2020), ‘The
parameterized complexity and kerneliza-
tion of resilience for database queries’.
doi:10.1016/j.tcs.2020.08.018

[102]: Kimelfeld, Vondrák, and Williams
(TODS, 2012), ‘Maximizing Conjunc-
tive Views in Deletion Propagation’.
doi:10.1145/2389241.2389243

DP-SS is a special case of GDP - we can solve a DP-SS problem by setting
𝑄1
del

to be a query with constants selecting for the values of 𝑡, 𝑘1
del

= 1
and setting Qmin to be the set of identity queries that select all tuples
from any relation in D. The key observation is that source side effects
can also be represented by computing a set of queries Qmin, and then the
difference between source and view side effects results from the choice
of query that defines the view.

Resilience (RES) is a variant of DP-SS that focuses on Boolean queries
and asks for the minimum number of deletions needed to make a
query false. It has been called the “simplest” of all deletion propagation
problems [59], and a large amount of literature has been dedicated
to understanding its complexity [17, 59, 60, 110, 120]. The complexity
results for the RES problem also imply complexity results for the DP-SS
problem [59]. Existing work has shown a complexity dichotomy for self-
join-free conjunctive queries, both under set [59] and bag semantics [110],
yet only few tractability results for queries with self-joins and unions
are known [17, 60, 110]. The RES problem can be modelled as a special
case of GDP similarly as DP-SS, with the added restriction that 𝑄1

del
is a

boolean query.

Deletion Propagation: View Side Effect (DP-VS) [23, 101–103]

Deletion Propagation with View Side effects (DP-VS) has the same deletion
propagation requirement (or “hard constraint”) as DP-SS, but does so
with the goal of minimizing the side effects on the view in which the
deletion occurs.

Definition 6.2.3 (DP-VS) Given a view defined by a query 𝑄 over a database
D, and an output tuple 𝑡 ∈ 𝑄(D), the deletion propagation with view side
effects problem is the task of determining a set of input tuples Γ ⊆ D such that
|∆𝑄(D, Γ)| is minimized and 𝑡 is not contained in 𝑄(𝐷 \ Γ). In other words,

min|𝑄(D)|−|𝑄(D\ Γ)| s.t. 𝑡 /∈ 𝑄(D\ Γ)

DP-VS is a special case of GDP where Qdel(D) contains a single query
whose output is the output tuple 𝑡 (just like in DP-SS), 𝑘1

del
= 1, and Qmin

has as single query 𝑄 from the original DP-VS problem. A complexity
dichotomy has been shown for the DP-VS problem for self-join-free CQs
under set semantics [102].

Aggregated Deletion Propagation with Source Side effect (ADP-SS) [94]

The Aggregated Deletion Propagation (ADP-SS) formulation extends the
previous DP-SS by requiring the deletion of any 𝑘 output tuples from a
view, rather than a specific output tuple.

Definition 6.2.4 (ADP) Given a view defined by a query 𝑄 over a database
D, and a positive integer 𝑘, the Aggregated Deletion Propagation (ADP)
problem is the task of determining a set of input tuples Γ ⊆ D such that |Γ| is
minimized and at least 𝑘 tuples are removed from 𝑄(D) as a consequence of
removing Γ from D. In other words,

min|Γ| s.t. 𝑄(D\ Γ)|≤ |𝑄(D)|−𝑘
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[94]: Hu, Sun, Patwa, Panigrahi, and Roy
(PVLDB, 2020), ‘Aggregated Deletion Propaga-
tion for Counting Conjunctive Query Answers’.
doi:10.14778/3425879.3425892

[121]: Miao, Roy, and Yang (SIGMOD, 2019),
‘Explaining Wrong Queries Using Small Exam-
ples’. doi:10.1145/3299869.3319866

[93]: Hu and Sintos (ICDT, 2024), ‘Finding
Smallest Witnesses for Conjunctive Queries’.
doi:10.4230/LIPIcs.ICDT.2024.24

Even though not explicit in the name of the problem, ADP-SS cares about
minimizing source side effects (which can be captured by GDP in the
same manner as for DP-SS). A complexity dichotomy has been shown
for the ADP problem for self-join-free conjunctive queries under set
semantics [94].

Smallest Witness Problem (SWP) [121]

The Smallest Witness Problem was not proposed as a DP problem, but
was noted to bear a strong but unspecified resemblance to the deletion
propagation variants [121]. We show that this resemblance is due to
the fact that – when modelled as a constraint optimization problem –
the correspondence of deletions of input and output tuples are based
on exactly the same constraints. Concretely, SWP can be seen as a
“preservation propagation” problem, where the goal is to find the largest
set of tuples that can be removed from the database without affecting the
results of a query. Using negation, we reformulate this as minimization
problem (to maintain consistency with other definitions in this section):

Definition 6.2.5 (SWP) Given a view defined by a query 𝑄 over a database
D, the smallest witness problem is the task of determining a set of input tuples
Γ ⊆ 𝐷 such that |Γ| is maximized and ∆𝑉(D, Γ) is exactly 0. In other words,

min−|Γ| s.t. |𝑄(D\ Γ)|= |𝑄(D)|

A complexity dichotomy has been shown for the SWP problem for self-
join-free conjunctive queries under set semantics [93]. Interestingly, the
tractable cases for SWP are a subset of the tractable cases for DP-VS,
reaffirming that these variants have a structural connection and should
be studied together.

6.2.3 Capturing Natural New Variants of Deletion
Propagation with GDP

Our GDP formulation allows for the definition of new variants of the
deletion propagation problem based on at least three types of extensions
to the existing variants. These extensions can also be combined in arbitrary
ways, leading to a rich set of new problems that can be defined using the
GDP framework.

Extension 1: New types of side effects. The existing variants of Deletion
Propagation problem have focused on minimizing source side effects or
view side effects. However, one can easily imagine the same underlying
source database being used to generate multiple views, and the user
wanting to delete tuples from one view while minimizing side effects on
another view. In Example 6.0.1, we saw an airline that wanted to cut down
expenses by reducing the number of flights, and terminating airport
leases. The side effects of this intervention would need to be measured
on a completely different view built on the same database, i.e., the view
showing the connectivity network for the airline includes places that do
not have a direct flight between them.

Extension 2: Constraints over multiple views. Existing variants of
Deletion Propagation only focus on a single view from which deletions
are propagated. However, one can imagine a scenario where tuples
from multiple views are deleted. Note that performing deletions on
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multiple views one at a time is not the same as performing deletions on
all views simultaneously, and the side effects of performing DP on each
view independently may be higher than performing DP on all views
simultaneously. As we saw in Example 6.0.1, the airline wanted to cut
down on multiple costs such as fuel costs and airport lease costs. Cutting
2% of total costs is not necessarily the same as cutting 1% of fuel costs
and 1% of airport lease costs. Depending on the current structure of
the airline, a different percent of cost-cutting in each category may be
required, and it is always better to jointly optimize over all the expense
views.

Extension 3: Combination of Deletion and Preservation Constraints.
Current variants of the DP problem only specify a deletion constraint, and
optimize over the tuples preserved (whether in the source or view). How-
ever, there may be some important tuples that should not be removed
from the database, and the user may want to enforce a preservation
constraint on these tuples. The user may also want an aggregated preser-
vation constraint, where a certain number of tuples must be preserved in
the view. In Example 6.0.1, we saw that the airline wanted to cut down on
costs but ensure that it keeps its most popular routes operational, thus
combining a deletion and preservation constraint.

6.3 ILP Framework for GDP

This section specifies an Integer Linear Program (ILP) ILP[GDP] which
returns an optimal solution for GDP for any instance supported by Def-
inition 6.2.1. We proceed in three steps, first providing a basic ILP
formulation and subsequently improving it in two steps. Our approach
works even if some views are defined with self-joins, or if the underlying
database uses bag semantics. We focus in this section on proving correct-
ness, while Section 6.4 later investigates how known tractable cases can
be solved in PTIME, despite the problem being NPC in general. The
input to the ILP[GDP] are the four sets of view-defining queries Qdel,
Qpres, Qmin, Qmax over a database D. Note that any of these sets can be
empty as well.‗ As input to our computation, we also assume as given
the set of witnesses for each output tuple in any of the computed views,
which can be obtained in PTIME by running the full version 𝑄𝐹 of each
query 𝑄 and computing the associated provenance polynomial. The
full version 𝑄𝐹 of a query 𝑄 is the query that we get by making any
existential variables into head variables (or equivalently, by removing
all projections). For example, the full version of 𝑄(𝑥) :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧)
is 𝑄𝐹(𝑥, 𝑦, 𝑧) :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧). The use of witnesses as an intermediary
between input (database) and output (view) tuples is a key modeling
step that allows us to formulate DP problems with linear constraints. We
thus associate with each output tuple a set of witnesses and use these
sets of witnesses to construct ILP[GDP].

In a slight abuse of notation we write 𝑣 ∈ Q(D) for 𝑣 ∈ ⋃
𝑄∈Q 𝑄(D)

and similarly, 𝑤 ∈ Q𝐹(D) for 𝑤 ∈ ⋃
𝑄∈Q 𝑄𝐹(D). We write that 𝑣 ∈ 𝑤

if 𝑣 ∈ 𝑄(D) is a projection of 𝑤 ∈ 𝑄𝐹(D) onto the head variables
of 𝑄. For example, for the earlier example of 𝑄(𝑥) :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧)
and 𝑄𝐹(𝑥, 𝑦, 𝑧) :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), assume we have two witnesses 𝑤1 =
𝑄𝐹(1, 2, 3), 𝑤2 = 𝑄𝐹(1, 3, 2), 𝑤3 = 𝑄𝐹(2, 1, 3), and two view tuples 𝑣1 =
𝑄1(1), 𝑣2 = 𝑄1(2). Then 𝑣1 ∈ 𝑤1, 𝑣1 ∈ 𝑤2, 𝑣1 ̸∈ 𝑤3, 𝑣2 ̸∈ 𝑤1, etc. It is

‗ Notice that the problem is still defined (though trivial) even if all sets are empty: Then
any set of interventions satisfy the problem, and the objective value is always 0.
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very important to note that we treat output tuples of different views
as distinct, even if they correspond to the same set of tuples in the
input database. Thus, we can have 𝑣1 ∈ 𝑄 𝑖

del
(D) and 𝑣2 ∈ 𝑄

𝑗

pres(D)

with 𝑄 𝑖
del

= 𝑄
𝑗

pres, and the valuation of variables for 𝑣1 is the same
as for 𝑣2, but we will still treat them as distinct: 𝑣1 ̸= 𝑣2 (similarly for
views). Notice that this modeling decision appears at first to create
inconsistencies, as our algorithm theorectically permits 𝑣1 to be deleted
from the view while 𝑣2 is preserved. However, as we discuss later, this
does not create inconsistencies and is actually crucial for the tractability
proofs in Section 6.4.

6.3.1 A basic ILP Formulation for GDP

We first define a naive ILP ILPN[GDP] with three components: the ILP
variables, an ILP objective function, and ILP constraints.

ILP Variables

We introduce binary variables 𝑋[𝑡] for each input tuple 𝑡 in the re-
lations from D which takes on value 1 if the corresponding tuple
is deleted, and 0 otherwise. Similarly, we introduce binary variables
𝑋[𝑣] for each output tuple 𝑣 in each of the view-defining queries in
Qdel(D), Qpres(D), Qmin(D), Qmax(D), and 𝑋[𝑤] for each witness 𝑤
in the full version of those queries.

ILP Objective Function (“Soft constraints”)

The only possible side effects of deleting a set of input tuples on a view
defined by a monotone query are deletions of tuples in the view. As
defined in Definition 6.2.1, we thus count the side effects as the number of
output tuples deleted from Qmin(D) plus the number of tuples preserved
in Qmax(D), respectively. Minimizing the number of tuples preserved in
a view is equivalent to maximizing the number of tuples deleted in that
view, which is equivalent to minimizing −1 times the number of tuples
deleted in that view. Thus, our overall goal is to minimize the following
objective function:

𝑓 (X) =
∑

𝑣∈Qmin(D)
𝑋[𝑣] −

∑
𝑣∈Qmax(D)

𝑋[𝑣]

ILP Constraints (“Hard constraints”)

The basic ILP formulation has two types of constraints: (1) User constraints
(UCs) are those that are application-specific and are specified by the
user. (2) Propagation constraints (PCs) encode the various relationships
between tuple variables, witness variables, and view variables needed
for consistency. In other words, PCs capture the effect of the hard user
constraints on the input database, and then the effect of the input database
on various views.

(1) User constraints (UCs). These are the deletion and preservation
constraints that are specified by the user on the view definitions Qdel
and Qpres, respectively. The deletion constraints specify that at least
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Figure 6.3: Propagation constraints in our ILP formulation ILPN[GDP], explained in the direction of propagating deletions
and thus providing lower bounds on the variables. The witness variables are the bridge between the tuple variables and
the view variables, and represent the output tuples of the corresponding full query.
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preserved in each view 𝑄 𝑖

pres ∈ Qpres (which is equivalent to deleting
at most |𝑄 𝑖

pres(D)|−𝑘 𝑖pres tuples):∑
𝑣∈𝑄 𝑖

del
(D)
𝑋[𝑣] ≥ 𝑘 𝑖del ∀𝑄 𝑖

del ∈ Qdel∑
𝑣∈𝑄 𝑖

pres(D)
𝑋[𝑣] ≤ |𝑄 𝑖

pres(D)|−𝑘 𝑖pres ∀𝑄 𝑖
pres ∈ Qpres

(2) Propagation constraints (PCs). These constraints encode the relation-
ships between input tuples, witnesses, and tuples in the views to obtain
upper and lower bounds on each. Any deletion in a view needs to be
reflected also in the input database, and as consequence also in the other
views. It is this necessary “propagation of deletions” from views (output
tuples) to the database (input tuples) that gave this family of problems
its name [23].

Figure 6.3 shows a summary of the propagation constraints, split into
two parts: the propagation constraints between input tuple variables
and witness variables (PC1 and PC2), and between witness variables
and view variables (PC3 and PC4). Notice that all PCs are bidirectional
in that they compare two types of variables and give an upper bound
for one and a lower bound for the other. Thus, each constraint can be
explained in two ways (depending on the direction of the propagation),
but not all constraints need to be applied to all views (recall our wildcard
semantics). We first describe the constraints, and then discuss when they
are enforced.

▶ PC1: (→) If an input tuple 𝑡 is deleted, then any witness 𝑤 containing
it is deleted. (←) If a witness 𝑤 is not deleted, then neither of its tuples
𝑡 ∈ 𝑤 is deleted.

𝑋[𝑡] ≤ 𝑋[𝑤], 𝑡 ∈ 𝑤
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▶ PC2: (←) If a witness 𝑤 is deleted, then at least one of its tuples 𝑡 ∈ 𝑤
is deleted. (→) Alternatively, if all tuples 𝑡 ∈ 𝑤 are not deleted, then
the witness 𝑤 is not deleted.∑

𝑡∈𝑤
𝑋[𝑡] ≥ 𝑋[𝑤] (6.1)

▶ PC3: (→) If all witnesses for a given output tuple 𝑣 are deleted, then
𝑣 is deleted. (←) If 𝑣 is not deleted, then at least one witness 𝑤 for 𝑣
is not deleted.

1 +
∑
𝑣⊆𝑤
(𝑋[𝑤] − 1) ≤ 𝑋[𝑣]

▶ PC4: (←) If a view tuple 𝑣 is deleted, then all witnesses contributing
to it are deleted. (→) If a witness 𝑤 is not deleted, then any view tuple
𝑣 ⊆ 𝑤 is not deleted.

𝑋[𝑤] ≥ 𝑋[𝑣], 𝑣 ⊆ 𝑤

Naive ILP

We define ILPN[GDP] as the program resulting from our definitions of ILP
variables, objective function, and constraints, and will sometimes refer to
it as the “naive ILP”.

Proposition 6.3.1 (Correctness of ILPN[GDP]) The interventions given by
an optimum solution of ILPN[GDP] for any D, Qdel, Qpres, Qmin, Qmax,
kdel, kpres are an optimum solution to GDP over the same input.

The direct mapping from the variables, objective and constraints of GDP
into our ILP formulation from this section forms the proof.

6.3.2 Wildcard Semantics for 𝑋[𝑤] and 𝑋[𝑣]

The binary variables for each input tuple 𝑋[𝑡] are always faithful to dele-
tions in the database D (a tuple is either deleted or present). However,
for witness variables 𝑋[𝑤] and output tuple variables 𝑋[𝑣] we use a
semantics that we call “wildcard semantics.” The intuition is that user
constraints on deletion views provide hard lower bounds on deletions in
the database (we need to provide at least that many deletions), while min-
imization views provide upper bounds (more deletions than necessary
get automatically penalized by the optimization objective). This results in
a one-sided guarantee. For example, setting 𝑋[𝑣1] = 1 for 𝑣1 ∈ 𝑄 𝑖

del
(D)

means it is necessarily deleted, and setting 𝑋[𝑣2] = 0 for 𝑣2 ∈ 𝑄 𝑖
pres(D)

means it is necessarily preserved. However, in this semantics we cannot
infer the actual status from 𝑋[𝑣1] = 0 and 𝑋[𝑣2] = 1. This semantics
allows us to simplify the ILP by having fewer constraints; and, it turns
out to be crucial for the tractability proofs in Section 6.4.

Example 6.3.1 (wildcard semantics) Consider a database D with
facts {𝑅(1, 1), 𝑅(2, 2), 𝑆(1)}, and query 𝑄(𝑥) :−𝑅(𝑥, 𝑦), 𝑆(𝑦). Consider
a DP-SS problem where tuple 𝑄(1) should be deleted from the output.
We introduce the tuple variables 𝑋[𝑅(1, 1)], 𝑋[𝑅(1, 2)], 𝑋[𝑆(1)], wit-
ness variables 𝑋[𝑄𝐹(1, 1)], 𝑋[𝑄𝐹(1, 2)], and view variables 𝑋[𝑄(1)],
𝑋[𝑄(2)]. We show in Figure 6.4 some possible variable assignments
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Figure 6.4: Example 6.3.1: The true
state of deletions in the database
D is always faithfully represented
by database variables (e.g., 𝑅(1, 2)
is deleted and thus 𝑋[𝑅(1, 2)] = 1
and is grayed out). However, dele-
tions in the views defined by a query
in Qdel need to provide only lower
bounds for modeling DP-SS (e.g., set-
ting 𝑋[𝑄𝐹(1, 2)] = 0 in case 2 is ok
even though the view tuple would
be deleted).

and discuss if they satisfy the wildcard semantics.

Case 1: A feasible solution is setting 𝑋[𝑅(1, 1)], 𝑋[𝑄𝐹(1, 1)], 𝑋[𝑄(1)]
to 1, and all other variables to 0, i.e. tuple 𝑅(1, 1) is deleted from the
database, witness 𝑄𝐹(1, 1) is deleted from the full query, and tuple
𝑄(1) is deleted from the view. In this case, all variables are faithful to
a set of actual deletions in the database and views.

Case 2: Another solution modifies 𝑋[𝑅(1, 2)] to 1, while the other vari-
ables remain the same (including 𝑋[𝑄𝐹(1, 2)] = 0). Since the witness
𝑄𝐹(1, 2) would be deleted once 𝑅(1, 2) is deleted, this solution is not
faithful to any set of interventions (if 0 assignments are interpreted
as required preservations). Notice, however, that this variable assign-
ment causes no harm in the correct fulfillment of the user constraints.
Marking a witness as not deleted when it is, is not a problem, since
this can never mark the user constraint as satisfied if it isn’t in reality.

Case 3: In contrast, a solution with 𝑋[𝑅(1, 1)] = 0, 𝑋[𝑄𝐹(1, 1)] = 1,
𝑋[𝑄(1)] = 1 is incorrect. It falsely claims to satisfy the user constraint
by deleting the tuple 𝑄(1) from the view, but it does not actually delete
any input tuples that would lead to this deletion.

Example 6.3.1 showed that for a variable 𝑋[𝑤] for a witness𝑤 in Q𝐹
del

(D),
it is important that we do not claim it is deleted if it is not (as this would
not truly satisfy the user requirement). Thus, 𝑋[𝑤] = 1 must imply
that 𝑤 ̸∈ Q𝐹

del
(D). However, deleting 𝑤 while having 𝑋[𝑤] = 0 is not a

problem, because this can never represent an unsatisfactory interventions
(as is the case when a user required deletions that are not truly carried
out). Thus, we use a semantics for witnesses in Q𝐹

del
where 𝑋[𝑤] = 1

implies witness𝑤 is deleted, while 𝑋[𝑤] = 0 acts as a “wildcard”, allowing
the witness to be deleted or not. In other words, truth assignments to
tuples in Qdel(D) provide a lower bound on the deletions of tuples in
the database (Figure 6.4). The exact same reasoning applies to the 𝑋[𝑣]
variables for view tuples in Qdel(D) as well.

Similarly, witness and view variables for Q𝐹
max and Qmax provide upper

bounds on tuple deletions in the database. For these views, a solution
stating that a witness / view tuples is not deleted when it is, is not a
problem since the user constraints specify a lower bound. Thus, here
too we allow the same semantics that 𝑋[𝑤] = 1 and 𝑋[𝑣] = 1 if 𝑤 / 𝑣
is deleted, and 𝑋[𝑤] = 0 and 𝑋[𝑣] = 0 are wildcard values where the
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X[w] = 0 X[w] = 1 X[v] = 0 X[v] = 1
Qmax(D) ∗ 𝑤 ̸∈Q𝐹

max(D) ∗ 𝑣 ̸∈Qmax(D)
Qdel(D) ∗ 𝑤 ̸∈Q𝐹

del
(D) ∗ 𝑣 ̸∈Qdel(D)

Qpres(D) 𝑤∈Q𝐹
pres(D) ∗ 𝑣∈Qpres(D) ∗

Qmin(D) 𝑤∈Q𝐹
min

(D) ∗ 𝑣∈Qmin(D) ∗

Figure 6.5: Table showing the one-
sided guarantees that any variable
assignment has on solution to a GDP
problem. For cases with wildcards
(“∗”), the true value of the variable
can be either 0 or 1.

witness/view tuple may or may not be deleted.

Symmetrically, for Qpres(D) and Qmin(D), we need to ensure that if a
tuples and witnesses is said to be preserved (i.e. their variables are set to
0), then it is actually preserved. Thus, 𝑋[𝑤] = 0 and 𝑋[𝑣] = 0 for 𝑤, 𝑣 in
Qpres and Qmin imply that the corresponding witness or view tuple is
not deleted, while 𝑋[𝑤] = 1 and 𝑋[𝑣] = 1 represent a wildcard value,
allowing the corresponding witness or view tuple to be deleted or not.
Figure 6.5 captures the semantics of the 𝑋[𝑤] and 𝑋[𝑣] variables for each
type of query.

Selective application of PCs. We use the wildcard semantics for witnesses
and view variables described in Subsection 6.3.1 to obtain a more efficient
ILP. Concretely, we don’t apply the PCs in directions that are not required
to enforce the wildcard semantics.

PC1 and PC3 encode lower bounds on the witness and view variables,
respectively. They ensure that 𝑋[𝑤] = 0 and 𝑋[𝑣] = 0 only when 𝑤 and 𝑣
are not deleted. Thus, they need to be applied to Qpres and Qmin, but do
not to Qdel and Qmax. Similarly, PC2 and PC4 are upper bounds on the
witness and view variables, respectively. They ensure that 𝑋[𝑤] = 1 and
𝑋[𝑣] = 1 only when 𝑤 and 𝑣 are deleted. Thus, they need to be applied
to Qdel and Qmax, but not to Qpres and Qmin. Figure 6.6 summarizes
the selective application of PCs to the different views.

Wildcard ILP. We refer to the “wildcard ILP” or ILPW[GDP] solution to
GDP as the basic ILP that applies the PCs only selectively, namely PC1
and PC3 to Qpres and Qmin (but not PC2 nor PC4), and PC2 and PC4 to
Qdel and Qmax (but not PC1 nor PC3).

Proposition 6.3.2 (Correctness of ILPW[GDP]) The interventions suggested
by an optimum solution of ILPW[GDP] are an optimum solution to GDP over
the same input.

Proof Intuition. The proof is based on the fact that any optimal solution
under traditional semantics is an optimal solution in the wildcard se-
mantics, and to enforce the wildcard semantics it suffices to apply PCs
selectively (which is possible as argued before).

Proof Proposition 6.3.2. We argue that every solution allowed by the wild-
card semantics corresponds to a feasible solution of the ILP under naive
semantics and vice versa. Additionally, we need to show that the optimal
value of the ILP under wildcard semantics is the same as the optimal
value of the ILP under naive semantics. That every solution of the ILP un-
der naive semantics corresponds to a solution of the ILP under wildcard
semantics is easy to see since the wildcard semantics is a generalization
of the naive semantics. To argue the other direction, we need to show
that every solution of the ILP under wildcard semantics corresponds to
a solution of the ILP under naive semantics with the same optimal value.
Such a corresponding solution can be obtained by keeping the values of
all 𝑋[𝑡] variables the same, and replacing all 𝑋[𝑣] and 𝑋[𝑤] variables
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Figure 6.6: Arrows in this figure il-
lustrate the constraints in the direc-
tion of lower bounds (but recall that
constraints are bidirectional). No-
tice that our wildcard semantics ap-
plies constraints only selectively to
different views (Subsection 6.3.2).
Also shown is how our Smooth-
ing Constraints (SC) replace PC1 for
Q𝐹
pres(D) (Subsection 6.3.3). It is

that replacement that gives us a pow-
erful PTIME guarantee for PTIME
problems (see later Figure 6.9 from
the experiments).

to what is implied by the variables under naive semantics. We can see
such a solution will still be feasible under the naive semantics since the
wildcard semantics enforce one-sided guarantees on the values of the
variables in the direction of the user constraints for witnesses and view
tuples in Vdel and Vpres. We now need to argue about the optimal so-
lutions under naive and wildcard semantics. First, we observe that using
wildcard semantics can never lead to a solution where the corresponding
naive solution has a less optimal objective value. This is due to the fact
that we have one-sided guarantees on the values of witnesses and view
tuples in Vdel and Vpres, that ensure that the objective value under
wildcard semantics is never strictly better than the objective value under
naive semantics. Combined with the fact that every solution under naive
semantics is a solution under wildcard semantics, we can conclude that
the optimal value of the ILP under wildcard semantics is the same as the
optimal value of the ILP under naive semantics.

6.3.3 ILP with Smoothing Constraints

The wildcard semantics alone does not give noticeable performance
improvements or PTIME guarantees for our ILP. However, it allows us to
enable a surprising optimization: we will tighten one type of constraint
in a way that the resulting solution space (a polyhedron) preserves an
optimal solution, yet also affords desirable properties on the performance
of the resulting ILP and also the optimal solution for its LP relaxation. It is
those seemingly superfluous constraints that play a key role in the results
of Section 6.4 where we show that an ILP with smoothing constraints
ILPS[GDP] can be solved in PTIME for all known tractable cases. Hence,
we also refer to ILPS[GDP] as simply ILP[GDP].

The user constraints and propagation constraints suffice to correctly
model GDP as an ILP. The purpose of the Smoothing Constraints (SC) is to
make the objective of the LP relaxation closer to the objective of the ILP
(in certain cases we see that the smoothing constraint makes the optimal
objective value of LP relaxation equal to that of the ILP). In the language
of linear optimization, adding these extra bounds is equivalent to adding
cutting planes [98] to the polytope defined by the LP relaxation.

We identify a smoothing constraint that can be added to describe the
relation between tuple variables, and the witness variables of Qpres.
Recall that for Qpres, we would like to preserve a certain number of view
variables. A view variable 𝑣 is preserved if at least one of its witnesses 𝑤
is preserved. Recall that due to our wildcard semantics of 𝑋[𝑤] in Qpres,
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setting 𝑋[𝑤] = 1 means that we “do not care” whether the witness is
deleted or not. In other words, we can say that for any view variable
𝑣, there is only one 𝑤 with 𝑋[𝑤] = 0 and the other witnesses can be
set to 1. Now assume that a tuple 𝑡 participates in multiple witnesses
𝑤1 , 𝑤2 , . . . , 𝑤𝑘 corresponding to the same view tuple 𝑣 (It may also
participate in more witnesses, but we do not care about those here). We
know through PC1 that 𝑋[𝑡] ≤ 𝑋[𝑤] for a given 𝑣 and 𝑡 ∈ 𝑤, 𝑤 ⊇ 𝑣.

It is correct to now also enforce that
∑

𝑖∈[1,𝑘] 𝑋[𝑤𝑖] ≥ 𝑘 − 1 i.e., only one
𝑋[𝑤] in this set is preserved (the rest may also be preserved, but due to
the wildcard semantics they will still have 𝑋[𝑤] = 1). Now we can also
enforce that 𝑋[𝑡] ≤ (

∑
𝑖∈[1,𝑘] 𝑋[𝑤𝑖])− (𝑘−1), since all but 1 values of 𝑋[𝑤]

are set to 1, and only the final value decides the upper bound on 𝑋[𝑡].
Thus, we get a smoothing constraint, applied to every 𝑣 ∈ Qpres(D):

𝑋[𝑡] ≤ 1 +
∑
𝑤:𝑡∈𝑤
𝑤⊇𝑣

(𝑋[𝑤] − 1)

Correctness of ILPS[GDP] with wildcard semantics and smoothing
constraints. We refer to ILPS[GDP] as the ILP that has only the PCs that
are required for wildcard semantics and has replaced the PC1 constraints
on Qpres in the basic ILP with SC instead.

Theorem 6.3.3 (Correctness of ILPS[GDP] (also known as ILP[GDP])) The
interventions suggested by an optimum solution of ILPS[GDP] with wildcard
semantics and smoothened constraints form an optimum solution to GDP.

Proof Intuition. Adding the smoothing constraint to the wildcard ILP
always preserves at least one optimal solution - this follows also from
the argument above the smoothing constraint can be derived by logically
following the wildcard semantics.

Proof Theorem 6.3.3. Under wildcard semantics, each solution set of inter-
ventions in the database corresponds to multiple ILP solutions, since the
value of 𝑋[𝑤] and 𝑋[𝑣] variables are not necessarily faithful to the vari-
ables. For Qpres, we can assume that a solution with wildcard semantics
exists such that for every view tuple 𝑣 ∈ Qpres(D), there is only one
witness such that 𝑣 ⊆ 𝑤 and 𝑋[𝑤] = 0 i.e. we can assume that for each
𝑣 ∈ Qpres(D), there is a unique 𝑤 that is marked as preserved (note that
more may be preserved, but unmarked due to the wildcard semantics).
The optimal value of the ILP under this assumption is the same as the
optimal value of the ILP under wildcard semantics (and hence naive
semantics). Due to this assumption, we can say that a given tuple and
view tuple, only one witness is preserved i.e.

∑
𝑖∈[1,𝑘] 𝑋[𝑤𝑖] ≥ 𝑘−1 where

𝑤1 . . . 𝑤𝑘 are the witnesses that correspond to 𝑣 and contain 𝑡. Now
we can also enforce that 𝑋[𝑡] ≤ (

∑
𝑖∈[1,𝑘] 𝑋[𝑤𝑖]) − (𝑘 − 1), since all but 1

values of 𝑋[𝑤] are set to 1, and only the final value decides the upper
bound on 𝑋[𝑡]. This is equivalent to adding the smoothing constraint,
and hence addition of the smoothing constraint does not change the
optimal solution of the ILP.

An interesting asymmetry. We notice an interesting asymmetry at play.
We could apply a symmetric smoothing constraint in the case for PC4 on
Qdel. Interestingly, such an additional smoothing constraint would be
identical to our original PC1, as every view tuple corresponds to exactly
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one witness. Thus, we do not need to add any additional smoothing
constraints for Qdel.

Reducing the size of the ILP. The smoothing constraints may subsume
some propagation constraints. These subsumed propagation constraints
can be removed from the ILP without affecting any solution of the ILP or
LP relaxation.

The Power of Smoothing Constraints. Example 6.3.2 is an intuitive
example of a SWP problem instance modelled as a GDP problem, where
the smoothing constraints ensure that the optimal value of the ILP is
equivalent to the optimal value of its LP relaxation in the GDP framework.
Later in Theorem 6.4.3, we show that this is the case for all prior known
PTIME cases of SWP.

Example 6.3.2 (Power of smoothing) Consider again the D from
Example 6.3.1: with 𝑅(1, 1), 𝑅(1, 2), and 𝑆(1). We want to solve the
smallest witness problem SWP(𝑄pres , D) for 𝑄pres(𝑥) :−𝑅(𝑥, 𝑦), 𝑆(𝑥).
To model it as GDP, we set Qpres to be ⟨𝑄pres⟩ and kpres = ⟨𝑘pres⟩
with 𝑘pres = 1, which is the number of output tuples in𝑄pres(D). We
also set Qmax = ⟨𝑄1

max(𝑥, 𝑦) :− 𝑅(𝑥, 𝑦), 𝑄2
max(𝑥) :− 𝑆(𝑥)⟩ and Qdel =

Qmin = ∅. Our GDP formulation is as follows:

𝑓 (X) = −(𝑋[𝑄1
max(1, 1)] + 𝑋[𝑄1

max(1, 2)] + 𝑋[𝑄2
max(1)])

s.t. following constraints (and integrality constraints):

𝑋[𝑄pres(1)] ≤ 0 (UC)

𝑋[𝑄𝐹
pres(1, 1)] + 𝑋[𝑄𝐹

pres(1, 2)] − 1 ≤ 𝑋[𝑄pres(1)] (PC3)

𝑋[𝑅(1, 1)] ≤ 𝑋[𝑄𝐹
pres(1, 1)] (PC1)

𝑋[𝑆(1)] ≤ 𝑋[𝑄𝐹
pres(1, 1)] (PC1)

𝑋[𝑅(1, 2)] ≤ 𝑋[𝑄𝐹
pres(1, 2)] (PC1)

𝑋[𝑆(1)] ≤ 𝑋[𝑄𝐹
pres(1, 2)] (PC1)

𝑋[𝑅(1, 1)] ≤ 𝑋[𝑄1𝐹
max(1, 1)] (PC2)

𝑋[𝑅(1, 2)] ≤ 𝑋[𝑄1𝐹
max(1, 2)] (PC2)

𝑋[𝑆(1)] ≤ 𝑋[𝑄2𝐹
max(1)] (PC2)

𝑋[𝑄1𝐹
max(1, 1)] ≤ 𝑋[𝑄1

max(1, 1)] (PC4)

𝑋[𝑄1𝐹
max(1, 2)] ≤ 𝑋[𝑄1

max(1, 2)] (PC4)

𝑋[𝑄2𝐹
max(1)] ≤ 𝑋[𝑄2

max(1)] (PC4)

Observe that the optimal solution for the ILP is −1 which occurs when
either one of the tuples in 𝑅 is deleted, i.e. either of 𝑋[𝑅(1, 1)] or
𝑋[𝑅(1, 2)] is set to 1. However, the LP relaxation has a smaller non-
integral optimum of −1.5 for 𝑋[𝑅(1, 1)] = 𝑋[𝑅(1, 2)] = 𝑋[𝑆(1)] = 0.5.
This is due to the fact that both 𝑋[𝑄𝐹

pres(1, 1)] and 𝑋[𝑄𝐹
pres(1, 2)]

can take values 0.5, which is why 𝑋[𝑄1
pres(1)] can be set to 0 while

fulfilling all constraints.

Our smoothing constraint for this example is the following

𝑋[𝑆(1)] ≤ 𝑋[𝑄𝐹
pres(1, 1)] + 𝑋[𝑄𝐹

pres(1, 2)] − 1 (SC)
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Figure 6.7: Example 6.3.2: Our
Smoothing Constraint (SC) acts as
a cutting plane, removing a non-
integral optimal point from the LP
relaxation of our ILP formulation.

Notice that it can replace the 𝑃𝐶1 constraints 𝑋[𝑆(1)]≤𝑋[𝑄𝐹
pres(1, 1)]

and 𝑋[𝑆(1)]≤𝑋[𝑄𝐹
pres(1, 2)], since it is a strictly tighter constraint.

The SC ensures that if 𝑋[𝑆(1)] is set to 0.5, then 𝑋[𝑄𝐹
pres(1, 1)] +

𝑋[𝑄𝐹
pres(1, 2)] ≥ 1.5, thus violating PC4, and thereby effectively

removing the non-integer solution. To gain more intuition, Figure 6.7
shows the polytope of the LP relaxation of our wildcard formulation
projected on either the variables involved in SC (Figure 6.7a), or the
three input tuples (Figure 6.7b). The optimal LP solution corresponds
to the orange point (point 3 in Figure 6.7a, point 6 in Figure 6.7b),
and the two optimal ILP solutions correspond to the two blue points
(points 1 and 2 in Figure 6.7a, points 0 and 2 in Figure 6.7b). Notice
how our SC (shown as yellow cutting plane in Figure 6.7a) cuts
away the non-integer solution, leaving only points 1 and 2, and their
convex extension. Similarly, this constraint cuts away all points with
𝑋[𝑆(1)] > 1 (not shown in Figure 6.7b), leaving points 0 and 2 and
their convex combination as the optimum solutions to the new LP.

From the workings of modern solvers we know that any ILP problem
can be solved efficiently if its natural LP relaxation is tight with the ILP
polytope in the direction of the objective (i.e. the ILP and its LP relaxation
have the same optimal 𝑓 ∗ and share the same “face” perpendicular to the
objective vector). Now, it suffices to show that the LP relaxation of the
smoothened ILP has the same optimum objective values 𝑓 ∗ and preserves
at least one optimal integral solution. We see experimentally in Figure 6.9
in Section 6.6 a speedup of 2 orders of magnitude in the ILP solving time
simply by adding the smoothing constraints. This is completely justified
by our claim that ILP solvers are able to solve ILPs efficiently when the
LP relaxation is tight.

6.4 Recovering Existing Tractability Results

In this section we focus on self-join-free queries under set semantics,
which is the only case in which complexity dichotomies are known for
the DP variants of DP-SS, DP-VS, ADP-SS, SWP. We have shown previously
that the GDP framework naturally captures all these problems as special
cases. In this section, we show that the LP relaxation of the GDP problem
also naturally recovers the optimal, integral solutions for these problems
for self-join queries that are known to be tractable under set semantics.

DP-SS. A DP-SS problem on a query 𝑄 can be converted to a resilience
problem on the existential version of the query 𝑄𝐸 which is obtained
by removing all head variables from 𝑄 (both in the head and the body).
Since a dichotomy result for self-join-free conjunctive queries is known for
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resilience both under set and bag semantics, it follows that a complexity
dichotomy is also known for DP-SS.

Let ILP[GDPDP-SS(𝑄, D, 𝑡)] be the ILP obtained when we pose the DP-SS
problem over a query 𝑄, database D and target tuple in view 𝑡, as a
GDP problem via the method described in Subsection 6.2.2. We now
claim that the LP relaxation LP[GDPDP-SS] of such an ILP ILP[GDPDP-SS], is
always equivalent to the solution of the optimization problem DP-SS for
all known queries 𝑄 for which DP-SS can be solved in PTIME, and thus
ILP[GDP] can be used to solve DP-SS in PTIME for such queries.

Theorem 6.4.1 (Integrality of LP[GDP] for tractable instances of DP-SS)
LP[GDPDP-SS(𝑄, D)] = DP-SS(𝑄, D) for all database instances Dunder set se-
mantics if the existential query𝑄𝐸 does not contain a triad.LP[GDPDP-SS(𝑄, D)] =
DP-SS(𝑄, D) for all database instances D under bag semantics if 𝑄𝐸 is a
linear query.

Proof Intuition. We show that ILP[GDPDP-SS] is identical to a specialized
ILP that has been proposed [110] for resilience (discussed in Chapter 4).
Since that result also shows that for all tractable queries, the LP relaxation
of the ILP is integral, the results naturally carry over.

Proof Theorem 6.4.1. Prior work has shown the construction of an ILP
ILP[RES∗] that has the property that LP[RES∗(𝑄, 𝐷)] = RES(𝑄, 𝐷) for all
𝑄 for which RES(𝑄, 𝐷) is known to be in PTIME - both under set and
bag semantics. We simply reuse this result, and show that LP[GDPDP-SS] is
identical to LP[RES∗] for the same query 𝑄 and database D. We know that
in the formulation of LP[GDPDP-SS], both Qmax and Qpres are empty. We
also know that all the output tuples must be deleted, thus we can replace
all variables 𝑋[𝑣] for 𝑣 ∈ Qdel(D) with the constant 1 without changing
the optimal solution of the ILP. Since each output tuple in Qmin(D) has
a 1-to-1 correspondence with the input tuples in D, the minimization
objective directly corresponds to the number of input tuples that are
deleted. Thus, in this case ILP[GDP] simplifies to look like:

min
∑
𝑡∈D

𝑋[𝑡]

subject to∑
𝑡∈𝑤

𝑋[𝑡] ≥ 1 ∀𝑤 ∈ 𝑄𝐹(D)

We observe that this ILP is identical to the ILP ILP[RES∗] that has been
proposed for the resilience problem [110], and thus the LP relaxation of
ILP[GDPDP-SS] is integral for all queries 𝑄 for which DP-SS is known to be
in PTIME [110, Theorem 8.6 and 8.7.].

DP-VS. It is known that DP-VS is PTIME for self-join-free conjunctive
queries if and only if they have the head domination property [102]. We
prove that for such queries that have the head domination property, if
we pose DP-VS(𝑄, D, 𝑡) in the GDP framework, then the LP relaxation
LP[GDPDP-VS(𝑄, D, 𝑡)] is equivalent to the solution of DP-VS(𝑄, D, 𝑡).

Theorem 6.4.2 (Integrality of LP[GDP] for tractable instances of DP-VS)
LP[GDPDP-VS(𝑄, D, 𝑡)] = DP-VS(𝑄, D, 𝑡) for all database instances D under
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set semantics and any tuple 𝑣 in 𝑄(𝐷) if 𝑄 has the head domination property.

Proof Intuition. If a query has the head domination property, it is known
that the optimal solution for DP-VS is side effect free [102]. Thus, the
optimal value of the ILP objective is 0, and LP relaxation cannot take on
a negative value and hence must be equal and integral.

Proof Theorem 6.4.2. DP-VS can be solved in PTIME for a query 𝑄 over
an arbitrary database D if and only if it has the head domination
property [102]. It is also known that for queries that have the head
domination property, the optimal solution for DP-VS is side effect free
[102, Proposition 3.2.]. Thus, in our formulation ILP[GDP] always has an
optimal solution of 1 - since the only output tuple that is deleted is the
one specified by the user. Since we know that LP[GDPDP-VS] is always a
lower bound for the true optimal solution, it suffices for us to show that
the LP relaxation of LP[GDPDP-VS] is not < 1. We know that the objective
function is a sum of 𝑋[𝑣] variable where each 𝑣 is an output tuple in
Qmax(D) and 𝑋[𝑣] takes on value 0 or 1 and thus can never be negative.
We also know that for a 𝑣 that the user would like to delete via DP-VS,
𝑋[𝑣] must be set to 1. Thus, the solution to LP[GDPDP-VS] is never < 1 and
never more than the optimal solution (which is always 1), and thus the
LP relaxation is integral and equal to the optimal solution.

SWP. It is known that SWP is PTIME for self-join-free queries if and only
if they have the head clustering property [93], which is a restriction of
the head domination property. We are again able to show that for such
queries that have the head clustering property, if we pose SWP(𝑄, D) in
the GDP framework, then the LP relaxation LP[GDPSWP(𝑄, D)] is equivalent
to the solution of SWP(𝑄, D).

Theorem 6.4.3 (Integrality of LP[GDP] for tractable instances of SWP)
LP[GDPSWP(𝑄, D)] = SWP(𝑄, D) for all database instances D under set and
bag semantics if𝑄 is a self-join-free conjunctive query with the head clustering
property.

Proof Intuition. We first simplify the ILP and phrase it in terms of variables
𝑌[𝑡] = 1−𝑋[𝑡]. We next show that due to the head clustering property, the
ILP can be decomposed into multiple independent ILPs, corresponding
to different existentially connected components of the query. For each
such component, the correct solution can be obtained by preserving an
arbitrary witness for each projection, and hence the LP relaxation must
be tight.

Proof Theorem 6.4.3. In order to construct SWP as a ILP[GDP], we set Vdel =
Vmin = ∅ since there are no views from which output must be deleted, or
deletions must be minimized. We set Vpres = {𝑄(D)}, and Vmax = [𝑅 ∈
𝐷]. kpres is set to |𝑄(D)| as we want to preserve all tuples in 𝑄(D), and
kdel is simply 0.
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We can then construct the ILP ILP[GDPSWP] as follows:

min −
∑

𝑣∈Vmax
𝑋[𝑣]

subject to ∑
𝑣∈𝑄(D)

𝑋[𝑣] ≤ |𝑄(D)|−kpres

𝑋[𝑡] ≤ 𝑋[𝑤], 𝑡 ∈ 𝑤
𝑋[𝑤] ≤

∑
𝑡∈𝑤

𝑋[𝑡]

𝑋[𝑣] ≤ 𝑋[𝑤], 𝑣 ⊆ 𝑤

1 +
∑
𝑣⊆𝑤
(𝑋[𝑤] − 1) ≤ 𝑋[𝑣]

𝑋[𝑡], 𝑋[𝑤], 𝑋[𝑣] ∈ {0, 1} ∀𝑡 , 𝑤, 𝑣

We know that each output tuple in Vmax has a 1-to-1 correspondence with
the input tuples in D (since Vmax is simply a union of all input relations).
Thus, we can replace all view variables 𝑋[𝑣] where 𝑣 ∈ Vmax with simply
the corresponding input tuple variables 𝑋[𝑡]. Now the function of the
propagation constraints is simply to propagate the deletions of output
tuples in Vpres to the input tuples in D. Since the user constraint provides
an upper bound for 𝑋[𝑣] for 𝑣 ∈ Vpres, the propagation constraints
must only provide a lower bound for 𝑋[𝑣] via 𝑋[𝑤] and then a lower
bound for 𝑋[𝑤] via 𝑋[𝑡].

Thus, we can greatly simplify the ILP to:

min −
∑
𝑡∈D

𝑋[𝑡]

subject to ∑
𝑣∈𝑄(D)

𝑋[𝑣] ≤ |𝑄(D)|−|𝑄(D)|

1 +
∑
𝑣⊆𝑤
(𝑋[𝑤] − 1) ≤ 𝑋[𝑣]

𝑋[𝑡] ≤ 𝑋[𝑤], 𝑡 ∈ 𝑤
𝑋[𝑡], 𝑋[𝑤], 𝑋[𝑣] ∈ {0, 1} ∀𝑡 , 𝑤, 𝑣

Since SWP primarily deals with preservations rather than deletions, we
can introduce a variable 𝑌[𝑣] that captures if a tuple 𝑣 is preserved, i.e.,
it is set to 1 if the tuple is preserved, and 0 otherwise. We can see that
𝑌[𝑣] = 1 − 𝑋[𝑣] and build a corresponding ILP with 𝑌 variables instead
of 𝑋 variables. This resulting ILP is identical to the one with 𝑋 variables
in that it will have the same optimal solution, and any solution of an ILP
or LP relaxation from one can be mapped to another by simply applying
the equality 𝑋[𝑣] = 1 − 𝑌[𝑣].
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min −
∑
𝑡∈D

1 − 𝑌[𝑡]

subject to ∑
𝑣∈𝑄(D)

1 − 𝑌[𝑣] ≤ |𝑄(D)|−|𝑄(D)|

1 − 𝑌[𝑡] ≤ 1 − 𝑌[𝑤], 𝑡 ∈ 𝑤
1 +

∑
𝑣⊆𝑤
(1 − 𝑌[𝑤] − 1) ≤ 1 − 𝑌[𝑣]

𝑌[𝑡], 𝑌[𝑤], 𝑌[𝑣] ∈ {0, 1} ∀𝑡 , 𝑤, 𝑣

Simplifying this ILP, we get:

min − |𝐷|+
∑
𝑡∈D

𝑌[𝑡]

subject to

|𝑄(𝐷)|≤
∑

𝑣∈𝑄(D)
𝑌[𝑣]∑

𝑣⊆𝑤
( − 𝑌[𝑤]) ≤ −𝑌[𝑣]

𝑌[𝑤] ≤ 𝑌[𝑡], 𝑡 ∈ 𝑤
𝑌[𝑡], 𝑌[𝑤], 𝑌[𝑣] ∈ {0, 1} ∀𝑡 , 𝑤, 𝑣

We can see through the constraint |𝑄(𝐷)|≤ ∑
𝑣∈𝑄(D) 𝑌[𝑣] that every 𝑌[𝑣]

value must necessarily be set to 1 to satisfy the constraint, whether in the
ILP or in the LP relaxation. We can thus simplify further to:

min
∑
𝑡∈D

𝑌[𝑡]

subject to

1 ≤
∑
𝑣⊆𝑤
(𝑌[𝑤])

𝑌[𝑤] ≤ 𝑌[𝑡], 𝑡 ∈ 𝑤
𝑌[𝑡], 𝑌[𝑤], 𝑌[𝑣] ∈ {0, 1} ∀𝑡 , 𝑤, 𝑣

Another way to see this simplified linear program is that it constrains
that at least one witness must be preserved for every output tuple, and
that if a witness is preserved, then all tuples in it must be preserved.

We now show that for queries that have the head cluster property, the
solution of LP[GDPSWP] is always integral. We first restate the definition of
the head cluster property.

Definition 6.4.1 (Existential Connectivity Graph 𝐺∃
𝑄

) The existential-
connectivity graph of a query 𝑄 is a graph 𝐺∃

𝑄
where each relation 𝑅𝑖 ∈ 𝑄

with attr(𝑅𝑖) - head(𝑄) ̸= ∅ is a vertex, and there is an edge between 𝑅𝑖

and 𝑅 𝑗 if attr(𝑅𝑖) ∩ attr(𝑅 𝑗) − head(𝑄) ̸= ∅.
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We can find the connected components of 𝐺∃
𝑄

by applying search al-
gorithm on 𝐺∃

𝑄
, and finding all connected components for 𝐺∃

𝑄
. Let

𝐸1 , 𝐸2 , . . . , 𝐸𝑘 ⊆ rels(𝑄) be the connected components of 𝐺∃
𝑄

, each
corresponding to a subset of relations in Q.

Definition 6.4.2 (Head Cluster Property) A query 𝑄 has the head cluster
property if for every pair of relations 𝑅𝑖 , 𝑅 𝑗 ∈ 𝑄 with head(𝑅𝑖) ̸= head(𝑅 𝑗),
it must be that 𝑅𝑖 and 𝑅 𝑗 are in different connected components of 𝐺∃

𝑄
.

In other words, the head cluster property ensures that all relations in the
same connected component of 𝐺∃

𝑄
have exactly the same head variables.

First let’s assume we have a query with a single connected component
in 𝐺∃

𝑄
. The head variables in this case are the same for all relations in

the query, and are the same as the head variables of the query. Due to
this, each input tuple contributes to a single output tuple, and thus we
can treat each projection to be preserved independently. In other words,
we can reduce our problem to preserving a single projection. Consider
that the query has 𝑚 relations. In a self-join-free query, at least one tuple
from each relation must be preserved, and a solution can be obtained
that preserves exactly 𝑚 tuples by preserving anyone witness arbitrarily.
Thus, the optimal solution to the ILP for a preserving a single projection
independently is always to preserve exactly 𝑚 tuples. We need to prove
that the LP relaxation of LP[GDPSWP] never has an optimal value smaller
than 𝑚. For every relation 𝑅𝑖 in the query, we show that the sum of 𝑋[𝑡]
variables for 𝑡 ∈ 𝑅𝑖 is always at least 1. This is because for each witness
we associate a corresponding 𝑅𝑖 input tuple that has at least the fractional
value assigned to 𝑋[𝑤] (if a tuple of 𝑅𝑖 corresponds to multiple 𝑤 then
it takes on sum of the fractional values of 𝑋[𝑤]). Since the sum of 𝑋[𝑤]
variables is at least 1, the sum of 𝑋[𝑡] variables for 𝑡 ∈ 𝑅𝑖 is at least 1.
Repeating this argument for all relations in the query, we can see that
the LP relaxation of LP[GDPSWP] at least 𝑚, and thus never better than the
optimal solution of the ILP.

Now let’s consider a query with multiple connected components in 𝐺∃
𝑄

.
We argue that we can treat each connected component independently,
and the optimal solution of the ILP is the sum of the optimal solutions
of the ILP for each connected component. Due to the fact that we deal
with self-join-free queries, no relations participate in multiple connected
components, and thus we can partition the input to the ILP into disjoint
sets of input relations.

We can show that the optimal value of the LP relaxation of LP[GDPSWP] is
equal to the sum of the optimal values of LP[GDPSWP] for each connected
component (which we have shown above to be integral). First we see
naturally that the LP relaxation of LP[GDPSWP] naturally decomposes into
the sum of the LP relaxations of LP[GDPSWP] for each connected component
- since if the overall output is preserved, each connected component must
be preserved. In the other direction, we want to show that if we add up
the solutions for each connected component, we get a feasible solution for
the LP relaxation of LP[GDPSWP]. This follows from the fact that relations
in different connected components share only head variables and thus
the preserved tuples in one connected component always join with the
preserved tuples in another connected component since they share the
same head variables. Thus the sum of the solutions for each connected
component is a feasible solution for the LP relaxation of LP[GDPSWP], and
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thus the LP relaxation is integral and equal to the optimal solution of the
ILP.

ADP-SS. A complexity dichotomy for the ADP-SSproblem for self-join-free
queries under set semantics is known. However, the complexity criterion
[94] is much more involved. In particular, ADP-SS for a self-join-free query
is PTIME if and only if (1) The query is Boolean and does not have a
triad, (2) The query has a singleton relation, (3) Repeated application of
decomposition by removing head variables that are present in all atoms,
and treating disconnected components of a query independently, results
in queries that are tractable. We show that no matter the reason for
tractability, if we pose ADP-SS(𝑄, D, 𝑘) in the GDP framework, then the LP
relaxation LP[ADP-SS] is equivalent to the solution of ADP-SS(𝑄, D, 𝑘).

Theorem 6.4.4 (Integrality of LP[GDP] for tractable instances of ADP-SS)
LP[GDPADP-SS(𝑄, D)] = SWP(𝑄, D) for all database instances D if 𝑄 is a self-
join-free for which ADP-SS(𝑄) is known to be tractable under set semantics.

Proof Intuition. The proof of optimality of the LP relaxation for ADP-SS is
similar to the proof for tractability in ADP-SS[94] in terms of the base cases
and how queries are decomposed. For the base case of boolean queries
without a triad, we use the proof of Theorem 6.4.1 as an argument, while
for the base case of singleton relations, we use the proof similar to that
of Theorem 6.4.2. We also show that the value of the LP relaxation is
preserved even when the query is decomposed into multiple parts.

Proof Theorem 6.4.4. The proof of tractability of ADP-SS [94] is divided
into two base cases and two types of recursive decompositions. The proof
of the integrality of the LP relaxation of LP[ADP-SS] follows the same
structure as the original proof of tractability of ADP-SS [94].

The two bases cases are for (1) Boolean queries and (2) queries with a
singleton relation i.e. a relation whose variables are either a subset of the
relations of all other relations in the query, or a subset or superset of the
head variables of the query. For base case (1), we see that this reduces
exactly to the resilience problem, and we can simply use Theorem 6.4.1
to show the integrality of ILP[GDPADP-SS]. For base case (2), we observe
that there is always an optimal solution of ADP-SS that deletes tuples only
from the singleton relation. In the language of the resilience problem
[59], the singleton relation dominates all other relations in the query.
The tuples of the singleton relations can then be removed from the
optimization problem. The resulting problem now contains only one
tuple per witness. The constraint matrix of this ILP never contains a cycle
- since no two input tuples share a witness, and thus do not form a cycle
in the constraint matrix. The constraint matrix is thus balanced [144], and
through well known results in optimization theory, is known to have an
integral solution for any integral objective function.

The two types of recursive decompositions are for (1) queries with a
universal attribute i.e., an attribute that appears in all relations of the
query, and (2) disconnected queries. We apply that this decomposition in
a similar manner to the proof of Theorem 6.4.3, and show that an optimal
solution of LP[ADP-SS] can be obtained by treating each decomposition
of the query independently. Thus, the overall LP relaxation is always
equal to the sum of the LP relaxations of the decomposed queries, and by
applying these decompositions recursively and using the integral base
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cases, we can show that the LP relaxation of LP[ADP-SS] is integral for all
queries for which ADP-SS is known to be in PTIME.

However, a difference in the decomposition performed here vs the proof
of Theorem 6.4.3 is that the value of 𝑘 in the decomposition of ADP-SS
must also be split across the decomposed queries. We do not actually
need to run the decomposed ILP over all possible splits of 𝑘, however
we simply prove that for any possible split of 𝑘, the solutions of the
decomposed ILPs leads to a feasible solution of the original ILP that
is (recursively) known to be integral. The optimal split of 𝑘 across the
decomposed queries (whatever it may be) is also then always recovered
by the original LP relaxation and hence the LP relaxation is integral
and equal to the optimal solution of the ILP for all queries for which
ADP-SS is known to be in PTIME (for all queries for which applying these
decompositions leads to one of the two base cases).

6.5 New Tractability Results

In this section, we show an example of a query that contains self-joins
and unions, and is tractable under bag semantics for the DP-VS and
SWP problems. We also show that this tractability can be recovered by
posing the problems in the GDP framework. Bag semantics and queries
with self-joins and unions are known to be challenging to analyze for
deletion propagation problems, and papers have been written with
the sole purpose of making progress on understanding the tractability
landscape in this complicated settings [17, 60]. This section (and the one
query presented in it) are meant to act as a proof of concept that the
ILP[GDP] framework can be an invaluable tool to help understand and
recover tractability results for various DP problems in these complicated
settings.

We show that DP-SS, DP-VS, SWP and ADP-SS are tractable for 𝑄△- (6.2)
under bag semantics. We know from prior work that this query is hard
for RES [60]†, and hence can infer that it is hard for DP-SS and ADP-SS as
well - since they are both generalizations of RES.

𝑄△-(𝑎) :−𝑅(𝑥, 𝑎, 𝑏), 𝑅(𝑥, 𝑏, 𝑐), 𝑅(𝑥, 𝑐, 𝑎) ∪ 𝑅(𝑥, 𝑒 , 𝑓 ), 𝑅(𝑥, 𝑓 , 𝑔) (6.2)

Proposition 6.5.1 (New tractable deletion propagation case via LP[GDP])
For all database instances Dunder bag semantics: (1)LP[GDPDP-VS(𝑄△- , D)] =
DP-VS(𝑄△- , D, 𝑡) for an arbitrary 𝑡 in the view (2) LP[GDPSWP(𝑄△- , D)] =
SWP(𝑄△- , D)

Proof Proposition 6.5.1. We look at each problem in turn.

For (1) DP-VS, we simply show that like in Theorem 6.4.2, the optimal
solution of ILP[GDPDP-VS] is always 1 and the LP relaxation thus cannot
take a lower value. In other words, a solution can be obtained that is side
effect free. If we simply delete all facts that contribute to the output tuple,
we will obtain a side effect free solution since every relation contains a
super set of the head variables of 𝑄△-. Thus, every tuple that is consistent
with the output tuple to be deleted, simply cannot be consistent with or
contribute to any other output tuple, and thus this solution is side effect
free. The rest of the proof is identical to Theorem 6.4.2.

† It reduces to the boolean SJ-chain query 𝑄() :−𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧), which is shown to be hard
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For (2) SWP, we show that like in Theorem 6.4.3, each input tuple
contributes to a single output tuple and thus each projection can be
treated independently. We also observe that the first sub-query of 𝑄△- i.e.
𝑄△-1 (𝑥) :−𝑅(𝑥, 𝑎, 𝑏), 𝑅(𝑥, 𝑏, 𝑐), 𝑅(𝑥, 𝑐, 𝑎) is dominated by the second sub-
query i.e., 𝑄△-2 (𝑥) :−𝑅(𝑥, 𝑒 , 𝑓 ), 𝑅(𝑥, 𝑓 , 𝑔). This means that preserving
all output tuples of 𝑄△-2 will also preserve all output tuples of 𝑄△-1 . In
other words, the constraints enforced to preserve the output tuples of
𝑄△-2 automatically imply the constraints that are enforced to preserve
the output tuples of 𝑄△-1 , and it suffices to reason about the preservation
of the output tuples of 𝑄△-2 .

We then also notice that each input tuple contributes to a single output
tuple, and thus we can treat each projection independently (just like in
Theorem 6.4.3). The difference here is that due to the self-joins in the
query, a single input tuple can contribute to a witness “multiple times”.
However, this does not make a difference in the phrasing of Propagation
Constraint 4, since the constraint looks at each input tuple independently.
It may be a witness has fewer tuples than atoms in the query (since tuples
may join with themselves), however, in terms of the ILP this just means
that there are fewer constraints to enforce, and the ILP is still integral. Due
to this fact, the remainder of the proof is identical to Theorem 6.4.3, and
we can show that the LP relaxation of LP[GDPSWP] is integral for 𝑄△-.

6.6 Experiments

The goal of our experiments is to evaluate the performance of our
unified ILP[GDP] (which is our short form for ILPS[GDP]) by answering
the following 4 questions: (Q1) Is the performance of ILP[GDP] comparable
to previously proposed specialized algorithms tailored to PTIME cases of
particular DP problems? (Q2) Can our unified ILP[GDP] indeed efficiently
solve new tractable cases with self-joins, unions, and bag semantics that
we proved to be in PTIME? (Q3) What, if any, is the performance benefit
we obtain via smoothing constraints as discussed in Section 6.3? (Q4)
What is the scalability of solving completely novel DP problems that fall
into our unified GDP framework on real-world data? (Q5) What is the
scalability of ILP[GDP] for PTIME cases with respect to different input
parameters such as the number of tuples, the number of relations, and
the maximum domain size? (Q6) What is the memory usage of ILP[GDP]
for various PTIME cases of DP problems?

Algorithms. ILP[GDP] denotes our ILP formulation for the generalized
deletion propagation. DPVS-S, SWP-S, ADP-S denote prior specialized
algorithms (“-S”) for the three problems V DP-VS [102], S SWP [93], and
A ADP-SS [94], respectively. Recall that these are dedicated algorithms
proposed for a PTIME cases of particular problems. We were not able
to find open source code for any of these problems and implemented
them based on the pseudocode provided in the respective papers that
proposed them: V [102], S [93], A [94]. To the best of our knowledge,
no experimental evaluation has ever been undertaken for some of these
algorithms [93, 102]. We do not include experimental comparison for
DP-SS, as for this problem the ILP[GDP] produced is exactly the same as
a prior specialized approach [110], and hence there is no difference in
performance.

Data. For most experiments we generate synthetic data by fixing the max
domain size to 1000, and sampling randomly from all possible tuples. For
experiments under bag semantics, each tuple is duplicated by a random
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Figure 6.8: (Q1)/(Q2): Performance
of ILP[GDP] on a previously known
(left column compared against prior
specialized algorithms) and a newly
discovered tractable query (right
column with no prior known spe-
cialized algorithm) for three prior
studied problems V DP-VS, S SWP,
and A ADP-SS. In all cases, ILP[GDP]
scales well under the theoretical
worst case complexity of ILPs and
LPs.

number that is smaller than a pre-specified max bag size of 10. For
answering (Q4) in Figure 6.10, we use an existing flights’ database [136]
that shows flights operated by different airlines in Jan 2019 as real world
data case study on a novel problem.

Software and Hardware. The algorithms are implemented in Python
3.8.8 and solve the optimization problems with Gurobi Optimizer 10.0.1.
Experiments are run on an Intel Xeon E5-2680v4 @2.40GH machine
available via the Northeastern Discovery Cluster.

Experimental Protocol. For each plot we run 3 runs of logarithmically
and monotonically increasing database instances. We plot all obtained
data points with a low saturation, and draw a trend line between the
median points from logarithmically increasing sized buckets. All plots
are log-log, and we include a dashed line to show linear scalability as
reference in the log-log plot.

(Q1) Known tractable cases. Is the performance of ILP[GDP] over PTIME
instances comparable to specialized algorithms studied in prior work?
We pick the 3-star query 𝑄3∗(𝑎) :−𝑅(𝑎, 𝑏), 𝑆(𝑎, 𝑐), 𝑅(𝑎, 𝑑), for which all
three problems can be solved in PTIME. We run all three problems on
this query and compare the performance of ILP[GDP] against specialized
algorithms. The ILP and the LP have worse worst-case complexity than
the specialized algorithms, however we see that ILP[GDP] is at times even
faster than the specialized algorithms, due to the better heuristics used in
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Figure 6.9: (Q3): Experiment show-
ing the power of Smoothing Con-
straints in ILP[GDP]: we observe that
ILP[GDP] is orders-of-magnitude
faster than the naive ILP formulation
ILPN[GDP], while also guaranteeing
the optimality of its LP relaxation.
Contrast with the LP relaxation of
ILPN[GDP] which can have an over
30% higher optimal objective (GDP)
value.

the ILP solver. In Figure 6.8a, we see that ILP[GDP] is about 20 times worse
than the specialized algorithms for D DP-VS. But this is expected for this
case, since the PTIME cases of DP-VS are only those where there are no
side effects and any tuple that contributes to the answer can be deleted,
thus making the problem solvable via a trivial algorithm. However, in
Figures 6.8c and 6.8e, we see that ILP[GDP] is about 2 and 3 orders of
magnitude faster than the specialized algorithms for S SWP and A ADP-SS,
both of which use decomposition based techniques, with the specialized
algorithm for A ADP-SS also requiring dynamic programming. Thus,
although the specialized algorithms have better asymptotic fine-grained
complexity and will perform better on adversarially chosen instances,
over random instances the LP solver (using heuristics) is able to find a
solution faster.

(Q2) Newly discovered Tractable cases. We evaluate the performance
of ILP[GDPDP-VS], ILP[GDPSWP] and ILP[GDPADP-SS] for 𝑄△-, a query with
self-joins and a union that we run under bag semantics. We showed in
Section 6.5 that the D DP-VS, S SWP, and A ADP-SS problems are tractable
for this query under bag semantics. There are no known specialized
algorithms for these problems, and thus we only compare the perfor-
mance of ILP[GDP] with the PTIME LP Relaxation. We see in Figures 6.8b,
6.8d and 6.8f that the ILP is as fast as its LP Relaxation and shows linear
scalability even for this complicated setting.

(Q3) The Power of Smoothing Constraints. Figure 6.9 shows two orders
of magnitude speedup in the ILP solving time after adding our Smoothing
Constraint (SC). We run ILP[GDPSWP] for the 3-star query 𝑄3∗, contrasting
ILP[GDP] with and without smoothing constraints. Since we show in
Section 6.4 that the LP relaxation of ILP[GDP] shares the same optimum
objective value, this surprising speed-up completely justified by our the
fact that ILP solvers can solve ILPs efficiently when the LP relaxation is
tight. Moreover, we see that the LP relaxation of ILP[GDPSWP] is always tight
for the 𝑄3∗ query. This is notably not true for the naive ILP formulation,
which can have an over 30% higher optimal objective (GDP) value.‡

(Q4) General performance. We use the flights’ database [136] that shows
500K+ flights operated by 17 different airlines in Jan 2019. We take the use
case of Example 6.0.1 and solve the GDP with the following requirements:
(1) Cut 2% of total costs of the airline, (2) Let the connection network
of an airline contain all pairs of places that have a direct (0-hop) or
1-hop flight between them. Minimize the effect of deletions on the
connection network i.e., minimize the number of location pairs that are
removed from the connection network. (3) A subset of pairs of places are

‡ Due to SWP being a maximization problem being posed as a minimization problem
through GDPSWP, the optimal values of GDPSWP are negative, and hence the magnitude of
the LP relaxation is higher than the ILP (despite the LP being a lower bound).
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Figure 6.10: (Q4): Performance Eval-
uation of the Generalized Dele-
tion Propagation over a real-world
dataset shows fast solve times
(within a minute) and comparable to
linear-time (black dashed line) scal-
ability.

“popular connections”. Ensure that such connections are preserved in
the connection network. For our case study, we assign a random expense
value to each airport as an airport fee and each flight as a fuel cost,
since the dataset does not contain any cost information. However, such
information or cost factors if known can be easily incorporated into the
ILP formulation by simply changing the randomly assigned costs to the
actual costs. We assume if an airline uses an airport, it must pay its fee
and assume that there are no additional costs. We show in Figure 6.10
the time to solve the GDP for this use case via ILP[GDP], and compare it
to the LP relaxation. We see that even for this real-world dataset, where
there are no guarantees on the properties of ILP[GDP], most instances are
solved in well under a minute, and the optimal solutions of the ILP and
LP relaxation coincide in many cases.§

(Q5) Scalability of ILP[GDP] for changing parameters. Figure 6.11 show
the scalability of ILP[GDP] for DP-VS, SWP and ADP-SS over different maxi-
mum domain sizes (102 , 103 , 104, 105), and Figure 6.12 for 𝑘-star queries
with increasing number of joins (𝑄3∗, 𝑄4∗, 𝑄5∗, 𝑄6∗). We see that the
scalability in both cases is very well predicted by the number of wit-
nesses, irrespecitve of the domain size or number of tuples. Increasing
the maximum domain size leads to a less dense instance that has fewer
witnesses and is thus easier to solve than a more dense instance with the
same number of tuples. Similarly, for changing the number of joins in
the query.

§ We observed that in some cases, ILP is faster than LP. This is a known observation and
may be due to numerical and floating-point issues [82].
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Figure 6.11: (Q5a): Scalability of
ILP[GDP] for different domain sizes:
we show the scalability with re-
spect to the number of tuples (left)
and the number of witnesses (right)
for DP-VS (top), SWP (middle), and
ADP-SS (bottom). We find that scal-
ability of ILP[GDP] is very well pre-
dicted by the number of witnesses,
irrespective of the number of tuples
or the domain size used.
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Figure 6.12: (Q5b): Scalability of
ILP[GDP] for different query size:
we show the scalability with re-
spect to the number of tuples (left)
and the number of witnesses (right)
for DP-VS (top), SWP (middle), and
ADP-SS (bottom). We find that scal-
ability of ILP[GDP] is very well pre-
dicted by the number of witnesses,
irrespective of the number of tuples
or the number of joins in the query
(given by m).
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Figure 6.13: (Q6): Memory consump-
tion of ILP[GDP] for three prior stud-
ied problems V DP-VS, S SWP, and
A ADP-SS. The left column shows
the memory consumption over dif-
ferent instances with increasing do-
main sizes, and the right column
shows the memory consumption
over different queries with increas-
ing number of joins. In all cases,
ILP[GDP] has sublinear memory con-
sumption w.r.t. the number of wit-
nesses.

(Q6) Memory consumption of ILP[GDP]. We conducted an additional
experiment Figure 6.13 that shows the measured space consumption
of ILP[GDP] using the psutil library¶. Figure 6.13 shows the memory
consumption of ILP[GDP] for a DP-VS, SWP and ADP-SS problems as a
function of the number of witnesses, parameterized for various maximum
domain sizes and queries with increasing number of joins. We see that
although the memory consumption is not guaranteed to be sublinear, in
practice it is sublinear w.r.t. the number of witnesses.

6.7 A Note on System Implementation

Our current proof of concept (see Section 6.6) uses Python to compute the
provenance of query results, and to translate this into an ILP formulation.
This part could be more tightly integrated with existing database systems
by leveraging existing efforts in our community that have been investigat-
ing how to repurpose provenance functionality during query execution
into PostgreSQL, such as Perm [70, 71], GProM [10], or ProvSQL [148].
Furthermore, the extensibility features of today’s database systems could
be used to add such an ILP solver to the database systems, just user de-
fined functions can be written in programming languages other than the
native SQL [20, 26, 109]. Such integrations of highly sophisticated solvers
for solving important database problems have been previously proposed

¶ https://pypi.org/project/psutil/
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for consistent query answering [47] and query optimization [153], and
we believe will become more common.

We believe our unified approach provides an easier integration into
existing database infrastructure than prior solutions for several rea-
sons: 1 Prior solutions to individual problems use different solution
approaches (e.g., ADP-SS uses dynamic programming, whereas DP-SS
uses reduction to flow). Thus an integration of all prior work would
require several adaptations, one for each method. 2 For an approach
to be natively supported by a relational database (thus without user
defined functions written in a programming language), the approach
would have to be first-order rewritable. Among the prior solutions, the
only cases we know of that are first-order rewritable are the few PTIME
cases for DP-VS [102]. All other approaches require writing functionality
in programming languages other than SQL, just as ours. 3 All prior
exact methods (except [110]) are incomplete in that they work only for
those conjunctive queries which can be solved in guaranteed PTIME.
Only some prior work propose approximation algorithms for the hard
cases (such as the one for DP-VS), yet implementing those require yet
other methods. 4 In addition, to our approach being the only one that
is complete, it also has a desirable anytime property: ILP solvers can
produce solutions of increasing quality as optimization progresses and
are able to provide bounds for how far the current solution is from the
optimum.

6.8 Chapter Summary

In this chapter, we have introduced a new framework for deletion prop-
agation problems that it is practical, efficient, and complete. We leave
with an interesting conjecture: All queries for which deletion propagation
problems are tractable can be solved in PTIME via our approach. We show that
this conjecture is true for all currently known tractable cases, and also show
an example of a query with self-joins and unions that was not previously
studied and that is tractable for our approach, even under bag semantics.
If proven correct, this would be another practically appealing reason for
using our approach now: we would get guaranteed PTIME performance
already today, even if the proof happens in the future. We leave open the
question of whether this conjecture is true for all tractable cases, and the
question of the complexity dichotomies of various deletion propagation
problems (including the ones introduced in this dissertation).
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This chapter is based on: Neha
Makhĳa and Wolfgang Gatterbauer.
2024. Minimally Factorizing the Prove-
nance of Self-join Free Conjunctive
Queries. Proc. ACM Manag. Data 2,
2, Article 104 (May 2024), 24 pages.
https://doi.org/10.1145/3651
605 [111].

Given the provenance formula for a Boolean query, what is its minimal
size equivalent formula? And under what conditions can this problem be
solved efficiently? This chapter investigates the complexity of minFACT,
i.e. the problem of finding a minimal factorization for the provenance of
self-join-free conjunctive queries (sj-free CQs). While the general Boolean
formula minimization is Σ𝑝

2 -complete [21]

[21]: Buchfuhrer and Umans (JCSS, 2011), ‘The
complexity of Boolean formula minimization’.
doi:10.1016/j.jcss.2010.06.011

, several important tractable
subclasses have been identified, such as read-once formulas [76]

[76]: Golumbic, Mintz, and Rotics (JDAM,
2008), ‘An improvement on the complexity
of factoring read-once Boolean functions’.
doi:10.1016/j.dam.2008.02.011

. In this
chapter, we identify additional tractable cases by identifying a large class
of queries for which the minimal factorization of any provenance formula
can be found in PTIME.

We focus on provenance formulas for two key reasons: 1) Provenance
computation and storage is utilized in numerous database applications.
The issue of storing provenance naturally raises the question: How
can provenance formulas be represented minimally? This problem has
previously been investigated in this context [131]

[131]: Olteanu and Závodnỳ (ICDT, 2012),
‘Factorised representations of query
results: size bounds and readability’.
doi:10.1145/2274576.2274607

, where algorithms were
described for factorizations with asymptotically optimal sizes, leading
to work on factorized databases. However, finding instance optimal
factorizations i.e. factorizations that are guaranteed to be the smallest
possible, for any arbitrary input, remains an open challenge, and is the
focus of our work.

2) Minimal factorizations of provenance formulas can be used to ob-
tain probabilistic inference bounds. Prior approaches for approximate
probabilistic inference are either incomplete i.e. focus on just PTIME
cases [141]

[141]: Roy, Perduca, and Tannen (ICDT,
2011), ‘Faster query answering in proba-
bilistic databases using read-once functions’.
doi:10.1145/1938551.1938582

, or do not solve all PTIME cases exactly [39, 66]

[39]: Dalvi and Suciu (VLDBJ, 2007), ‘Efficient
query evaluation on probabilistic databases’.
doi:10.1007/s00778-006-0004-3

[66]: Gatterbauer and Suciu (VLDBJ, 2017),
‘Dissociation and propagation for approx-
imate lifted inference with standard re-
lational database management systems’.
doi:10.1007/s00778-016-0434-5

. As we show,
using minimal factorization as a preprocessing step achieves the best of
both worlds: It is complete (i.e. it applies to easy and hard cases) while
recovering all known PTIME cases exactly.

In this chapter, we prove that the minimal factorization problem is
NP-Complete (NPC) for provenance formulas, and give two algorithms
for all sj-free CQs that are unified algorithms in the sense that they solve
all known tractable cases in PTIME, and provide approximations for
hard cases. We further place the set of tractable queries firmly between
the tractable queries for two other related problems: resilience [59] and
probabilistic query evaluation [38] (Figure 7.1).
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Figure 7.1: This chapter gives hard-
ness results, identifies PTIME cases,
and gives exact and approximate
algorithms for self-join-free conjunc-
tive queries. We prove that the
tractable queries for minFACT reside
firmly between the tractable cases
for probabilistic query evaluation
(PROB) = the hierarchical queries
with one minimal query plan, and
those for resilience (RES) = queries
without active triads. The open cases
are linear queries with ≥ 3 mini-
mal query plans (though we know
that 𝑄∞4 is in PTIME), and lineariz-
able queries with deactivated triads
and without co-deactivated triads
(though we know that the triangle
unary query 𝑄△

𝐴
is in PTIME).

[141]: Roy, Perduca, and Tannen (ICDT,
2011), ‘Faster query answering in proba-
bilistic databases using read-once functions’.
doi:10.1145/1938551.1938582

[39]: Dalvi and Suciu (VLDBJ, 2007), ‘Efficient
query evaluation on probabilistic databases’.
doi:10.1007/s00778-006-0004-3

[59]: Freire, Gatterbauer, Immerman,
and Meliou (PVLDB, 2015), ‘The Com-
plexity of Resilience and Responsibility
for Self-Join-Free Conjunctive Queries’.
doi:10.14778/2850583.2850592

7.1 Chapter Overview and Contributions

1 The minFACT problem has strong ties to the diverse problems of
Boolean factorization, factorized databases, probabilistic inference, and
resilience, among others. Section 7.3 explains these connections after
Section 7.2 formalizes the problem.

2 Section 7.4 describes connections between provenance factorizations,
variable elimination orders (VEOs) and query plans. These connections
allow us to reformulate minFACT as the problem of assigning each witness
to one of several “minimal VEOs.”

3 Section 7.5 develops an ILP encoding to solve minFACT for any sj-free
CQ exactly. We are not aware of any prior ILP formulation for minimal-
size encodings of propositional formulas, for restricted cases like for
monotone formulas.

4 Section 7.6 describes our two unified PTIME algorithms that are exact
for all known PTIME cases, and approximations otherwise. The first one
encodes the problem in the form of a “factorization flow graph” s.t.
a minimal cut of the graph corresponds to a valid factorization of the
instance. We refer to this algorithm as the MFMC (Max-Flow Min-Cut)
based algorithm. The second is an LP relaxation of our ILP encoding,
for which we also prove a guaranteed constant factor approximation for
hard queries.

5 Section 7.7 proves that both our unified algorithms can solve the
minFACT problem exactly if the database instance allows a read-once
factorization. This implies that our algorithms recover and generalize
prior approaches [141] that are limited to read-once formulas.

6 Section 7.8 provides a large class of queries for which our PTIME
algorithms can solve the minFACT problem exactly over any database
instance. This class includes hierarchical queries as a strict subset, proving
that the tractable queries for minFACT are a strict superset of those for
probabilistic query evaluation (PROB) [39].

7 Section 7.9 proves that the decision variant of minFACT is NPC for a
set of queries that form a strict superset of queries that contain “active
triads”. This result proves that the intractable queries for minFACT are
a strict superset of those that are intractable for resilience (RES) [59],
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[156]: Vardi (STOC, 1982), ‘The Complexity of
Relational Query Languages (Extended Ab-
stract)’. doi:10.1145/800070.802186

[150]: Suciu, Olteanu, Ré, and
Koch (2011), Probabilistic Databases.
doi:10.2200/s00362ed1v01y201105dtm016

thereby bounding the tractable queries for our problem firmly between
those tractable for PROB and those tractable for RES.

8 Section 7.10 shows that using minimal factorization can lead to more
accurate probabilistic inference.

9 Section 7.12 contains experiments evaluating the performance and
results of the ILP encoding, LP relaxation, and MFMC-based algorithm.

7.2 Problem Definition

For a provenance 𝜑𝑝 = Prov(𝑄, 𝐷) as DNF, we want to find an equivalent
formula 𝜑′ ≡ 𝜑𝑝 with the minimum number of literals.

Definition 7.2.1 (FACT) Given a query 𝑄 and database D, we say that
(𝐷, 𝑘) ∈ FACT(𝑄) if there is a formula 𝜑′ of length len(𝜑′) ≤ 𝑘 that is
equivalent to the expression 𝜑𝑝 = Prov(𝑄, 𝐷).

Our focus is to determine the difficulty of this problem in terms of data
complexity [156], i.e., we treat the query size |𝑄| as a constant. We are
interested in the optimization version of this decision problem: given 𝑄
and D, find the minimum 𝑘 such that (𝐷, 𝑘) ∈ FACT(𝑄). We refer to this
optimization variant as the minFACT problem and use minFACT(𝑄, 𝐷) to
refer to the length of the minimal size factorization for the provenance of
database Dunder query 𝑄.

We focus on Boolean queries (i.e., where y = ∅), since the problem of
finding the minimal factorization of the provenance for one particular
output tuple of a non-Boolean query immediately reduces to the Boolean
query case (see e.g. [150]).‗ We also focus on self-join-free conjunctive
queries (sj-free CQs) as a first step.

Example 7.2.1 (FACT) Consider the provenance of𝑄★
2 over the modified

database Dwith tuple 𝑠13 from Figure 3.1. It has no read-once form
and a minimal size formula is

𝜑′′ = 𝑟1(𝑠11𝑡1 ∨ 𝑠12𝑡2 ∨ 𝑠13𝑡3) ∨ (𝑟2𝑠23 ∨ 𝑟3𝑠33)𝑡3

We see that len(𝜑′′) = 12. It follows that (𝐷, 12) ∈ FACT(𝑄★
2 ). At the

same time, (𝐷, 11) ̸∈ FACT(𝑄★
2 ) and thus minFACT(𝑄★

2 , 𝐷) = 12.

7.3 Related Work

While the related work discussed in Chapter 2 is still relevant in this
chapter, there are some additional factorization-specific connections we
point out here.

‗ A solution to Boolean queries immediately also provides an answer to a non-Boolean
query 𝑄(y): For each output tuple 𝑡 ∈ 𝑄(𝐷), solve the problem for a Boolean query 𝑄′

that replaces all head variables y with constants of the output tuple 𝑡.
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7.3.1 Boolean Factorization

Minimum Equivalent Expression (MEE) is the problem of deciding
whether a given Boolean formula 𝜑 (note that we use the terms expres-
sions and formulas interchangeably) has a logically equivalent formula
𝜑′ that contains≤ 𝑘 occurrences of literals. It was known to be at least NP-
hard for over 40 years [64, Section 7.2] and was shown to be Σ2

𝑝-complete
only 10 years ago [21]. The problem is more tractable for certain restric-
tions like Horn formulas [88] as input, or if allowing arbitrary Boolean
functions as connectors [90], or if posed as the Minimum Formula Size
Problem (MFSP) that takes the uncompressed truth table as input [6, 96].
There is a lot of work on approximate Boolean function factorization
[114, 122], however efficient, exact methods are limited to classes such
as read-once [76] and read-polarity-once formulas [24] (see [35, Section
10.8] for a detailed historical overview). Our problem restricts the formula
to be minimized to the provenance of a sj-free conjunctive query (i.e. a
monotone, 𝑚-partite DNF that follows join dependencies), with the goal
of uncovering important classes that permit a PTIME exact evaluation.

Figure 7.2 illustrates the landscape of known results for the problem of
Minimum Equivalent Expressions (MEE) applied to formulas. The general
problem of MEE has been long known to be NP-hard [64]. However, only
relatively recently it has been proved to be Σ2

𝑝-complete [21]. Various
important classes of this problem have been studied, a fundamental one
being the factorization of DNF expressions. The MinDNF problem [155],
deals with finding the minimum equivalent DNF expression of an input
DNF formula, and is also known to be Σ2

𝑝-complete. However, if the
input to the MinDNF is the truth table (or set of all true assignments of
the formula) then the problem is NPC [6]. If we take away the restriction
that the factorized formula must be a DNF, then the problem of finding
the minimum factorization of an input table is known as the Minimum
Formula Size Problem (MFSP) and is shown to be in NP and (ETH)-hard
[96].

Another important class of restrictions is over monotone formulas (thus
we do not allow negatives in input or output formulas). Surprisingly,
we do not know of any work that proves the complexity of the general
monotone boolean factorization problem. However, there are many
interesting and important restrictions for which complexity results are
known. One such important sub-class is that of read-once formulas,
which can be factorized in PTIME [76]. For Monotone formulas with DNF
input and output restrictions, the problem can be solved in logspace
by eliminating monomials [73]. Interestingly the problem monotone
formula factorization of an arbitrary formula with a DNF restriction on
the output only has differing complexity based on the input encoding
of the length of the factorization. Checking if the minimum size of a
DNF for a monotone formula is at most k is PP-complete, but for k in
unary, the complexity of the problem drops to coNP [73]. The intuition
is that in this problem, (which can be seen as “dual” of minFACT since
it has a DNF output restriction instead of a DNF input restriction), the
optimal output (a DNF) can be exponentially larger than the input (any
monotone formula).

Our problem of minFACT is a further restriction on the MEE problem
applied to a monotone DNF. Provenance formulas for sj-free CQs are
𝑘-partite monotone formulas that satisfy join dependencies. We prove
in this paper that the problem is NPC, in general, and further identify
interesting PTIME subcases.
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Figure 7.2: An overview of related work on the Exact, Minimal Equivalent Expression (MEE) problem applied to formulas.
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results: size bounds and readability’.
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(TODS, 2012), ‘On Provenance Minimization’.
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Factorized Databases. Our problem has been studied before in the
context of Factorized Databases (FDBs) [129–132]. Five key differences
in focus are: (𝑖) The tight bounds provided through that line of work
are on “readability” i.e. the lowest 𝑘 such that each variable in the
factorized formula is repeated at most 𝑘 times. The work shows that the
class of queries with bounded readability is strictly that of hierarchical
queries [131]. In contrast, we focus on the minimal number of variable
repetitions and show this can be calculated in PTIME for a strict superset
of hierarchical queries. (𝑖𝑖) For bounds on the minimal length (as is our
focus), FDBs focus only asymptotic bounds on the size of query result
representations [132] whereas we focus on minimizing the exact number
of variables (e.g. whether a provenance is read-once or has a factor
2 bigger size is of no relevance in the asymptotic analysis of FDBs).
(𝑖𝑖𝑖) variants of FDBs permit the reuse of intermediate results, i.e. they
focus on the corresponding circuit size, while we focus on formulas. (𝑖𝑣)
Intuitively, FDBs study the trade-offs between applying one of several
factorizations (or query plans or variable elimination orders) to the entire
query results at once, whereas we may factorize each witness in different
ways. (𝑣) Except for [130], the work on FDBs focuses on factorizations
in terms of domain values whereas provenance formulas are defined
in terms of tuple variables (e.g, a tuple from an arity-3 relation has 3
different domains, but is still represented by a single tuple variable).
These discrepancies lead to different technical questions and answers.
Also related is the very recently studied problem of finding a factorized
representation of all the homomorphisms between two finite relational
structures [14]. Similar to FDBs, that work also differs from ours in
that it focuses on the asymptotic factorization size (and proves lower
bounds and allows a circuit factorization instead of a formula). Our
problem is also different from the problem of calculating a “𝑝-minimal
query” for a given query [9]: The solution to our problem depends on the
database instance and factorizes a given provenance formula, whereas
the latter problem is posed irrespective of any given database, chooses
among alternative polynomials, and becomes trivial for queries without
self-joins.
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7.3.2 Probabilistic Inference, Read-Once Formulas, and
Dissociation

Probabilistic query evaluation (PROB) is #P-hard in general [39]. However,
if a provenance formula 𝜑 can be represented in read-once form then
its marginal probability ℙ[𝜑] can be computed in linear time in the
number of literals. Olteanu and Huang [127] showed that the previously
known tractable queries called hierarchical queries lead to read-once
factorizations. A query 𝑄 is called hierarchical [39] iff for any two
existential variables 𝑥, 𝑦, one of the following three conditions holds:
at(𝑥) ⊆ at(𝑦), at(𝑥) ⊇ at(𝑦), or at(𝑥) ∩ at(𝑦) = ∅, where at(𝑥) is the
set of atoms of 𝑄 in which 𝑥 participates. Roy et al. [141] and Sen et
al. [147] independently proposed algorithms for identifying read-once
provenance for non-hierarchical queries in PTIME. Notice that finding
the read-once form of a formula (if it exists) is just an extreme case of
representing a Boolean function by a minimum length (∨,∧)-formula.
Our solution is a natural generalization that is guaranteed to return a read-
once factorization in PTIME should there be one. We give an interesting
connection by proving that the tractable queries for our problem are a
strict superset of hierarchical queries and thus the tractable queries for
probabilistic query evaluation.

Given a provenance that is not read-once, one can still upper and lower
bound its probability efficiently via dissociation [65]: Let 𝜑 and 𝜑′

be two Boolean formulas with variables x and x′, respectively. Then
𝜑′ is a dissociation of 𝜑 if there exists a substitution 𝜃 : x′ → x s.t.
𝜑′[𝜃] = 𝜑. If 𝜃−1(𝑥) = {𝑥′1 , . . . , 𝑥′𝑑}, then variable 𝑥 dissociates into 𝑑
variables 𝑥′1 , . . . , 𝑥

′
𝑑
. Every provenance expression has a unique read-once

dissociation up to renaming of variables. One application of compiling
provenance polynomials into their smallest representation is motivated
by the following known results on “oblivious bounds" [65]: (𝑖) lower and
upper bounds for intractable expressions can be found very efficiently;
and (𝑖𝑖) those bounds work better the fewer times variables are repeated.
Similarly, anytime approximation schemes based on branch-and-bound
provenance decomposition methods [56, 92] give tighter bounds if
Shannon expansions need to be run on fewer variables.

7.4 Search Space for minFACT

Before we create a unified algorithm to find minimal factorization for
provenance formulas, it is important to reason about and formalize the
space of possible factorizations and how we can encode them.

7.4.1 Factorizations and Variable Elimination Orders

Factorizations. In order to find the minimal factorization of a provenance
formula, we first define a search space of all permissible factorizations.
Each factorized formula can be represented as a factorization tree (or FT),
where each literal of the formula corresponds to a leaf node,† and internal
nodes denote the ⊕ and ⊗ operators of the commutative provenance
semiring. The length (size) of a FT is the number of leaves. We allow the
semiring operations to be 𝑘-ary (thus even unary) and use prefix notation
for the operators when writing FTs in linearized text. Notice that the

† A variable may appear in multiple leaves just as it can in a factorized formula.
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Figure 7.3: Representation of a factorization as a mapping of witnesses to VEOs for an example database under query 𝑄★
2 .

Theorem 7.4.1 shows the correspondence of (a) via (b) to (c). Theorem 7.4.2 shows the correspondence of (c) via (d) to (e)
for some minimal factorization tree.

[45]: Dechter (AI, 1999), ‘Bucket elimina-
tion: A unifying framework for reasoning’.
doi:10.1016/S0004-3702(99)00059-4

[129]: Olteanu and Schleich (SIGMOD
Rec. 2016), ‘Factorized Databases’.
doi:10.1145/3003665.3003667

space of FTs is strictly larger than the space of factorized expressions:
E.g., the FT ⊗(𝑟1 , 𝑠1 , 𝑡1) is not equivalent to ⊗(𝑟1 ,⊗(𝑠1 , 𝑡1)), although
they represent the same formula 𝑟1𝑠1𝑡1. We consider FTs as equivalent
under commutativity i.e. we treat⊗(𝑟1 , 𝑠1 , 𝑡1) as equivalent to⊗(𝑠1 , 𝑡1 , 𝑟1).
Furthermore, w.l.o.g., we only consider trees in which the operators
⊕,⊗ alternate: E.g., ⊗(𝑟1 ,⊗(𝑠1 , 𝑡1)) is not alternating but represents the
same formula as the alternating tree ⊗(𝑟1 ,⊕(⊗(𝑠1 , 𝑡1))) using unary ⊕.
Henceforth, we use factorization trees or FTs as a short form for alternating
factorization trees.

Variable Elimination Order (VEO). FTs describe tuple-level factorizations,
however, they fail to take into account the structure (and resulting
join dependencies) of the query producing the provenance. For this
purpose, we define query-specific Variable Elimination Orders (VEOs). They
are similar to VEOs in general reasoning algorithms, such as bucket
elimination [45] and VEOs defined in FDBs [129] for the case of no caching
(i.e. corresponding to formulas, not circuits). However, our formulation
allows each node to have a set of variables instead of a single variable (see
e.g. Example 7.4.8 and Figure 7.7 in the appendix). This allows VEOs to
have a 1-to-1 correspondence to the sequence of variables projected away in
an “alternating” query plan, in which projections and joins alternate, just
as in our FTs (details in Subsection 7.4.2). Furthermore, we show VEOs
can be “annotated” with a data instance and “merged” to form forests
that describe a minimal factorization tree of any provenance formula.

Definition 7.4.1 (Variable Elimination Order (VEO)) A VEO 𝑣 of a query
𝑄 is a rooted tree whose nodes are labeled with non-empty sets of query
variables s.t. (𝑖) each variable of 𝑄 is assigned to exactly one node of 𝑣, and
(𝑖𝑖) all variables x for any atom 𝑅(x) in 𝑄 must occur in the prefix of some
node of 𝑣.

Definition 7.4.2 (VEO instance) Given a VEO 𝑣 and witness w, a VEO in-
stance 𝑣⟨w⟩ is the rooted tree resulting from annotating the variables x in 𝑣
with the domain values of w.
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In order to refer to a VEO in-text, we use a linear notation with parentheses
representing sets of children. To make it a unique serialization, we need
to assume an ordering on the children of each parent. For notational
convenience, we leave out the parentheses for nodes with singleton sets.
For example, 𝑥← 𝑦, (instead of {𝑥}←{𝑦}) and {𝑥, 𝑦} are two valid VEOs
of 𝑄★

2 . We refer to the unique path of a node to the root as its prefix.

Example 7.4.1 (VEO and VEO instance) Consider the 3-chain Query
𝑄∞3 :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑢). An example VEO is 𝑣 = 𝑧← (𝑢, 𝑦← 𝑥)
(Figure 7.6a). To make it a unique serialization, we need to assume an
ordering on the children of each parent. Notice that our definition of
VEO also allows sets of variables as nodes. As an extreme example, the
legal query plan 𝑃′ = 𝜋−𝑥𝑦𝑧𝑢 Z(𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑦)) corresponds
to a VEO 𝑣′ with one single node containing all variables. In our short
notation, we denote nodes with multiple variables in brackets without
commas between the variables to distinguish them from children:
𝑣′ = {𝑥𝑦𝑧𝑢}.
Now consider a witness w = (1, 2, 3, 4) for (𝑥, 𝑦, 𝑧, 𝑢), which we also
write as w = (𝑥1 , 𝑦2 , 𝑧3 , 𝑢4). The VEO instance of w for 𝑣 is then
𝑣⟨w⟩ = 𝑧3← (𝑢4 , 𝑦2← 𝑥1). Notice our notation for domain values
arranged in a tree: In order to make the underlying VEO explicit (and
avoiding expressions such as 𝑣⟨w⟩ = 3← (4← 2, 1) which would
become quickly ambiguous) we include the variable names explicitly
in the VEO instance. We sometimes refer to them as “domain-annotated
variables.”

Definition 7.4.3 (VEO table prefix) Given an atom 𝑅 in a query 𝑄 and a
VEO 𝑣, the table prefix 𝑣𝑅 is the smallest prefix in 𝑣 that contains all the
variables x ∈ var(𝑅).

Similarly to 𝑣⟨w⟩ denoting an instance of a given VEO 𝑣 for a specific
witness w, we also define a table prefix instance 𝑣𝑅⟨w⟩ for a given table
prefix 𝑣𝑅 and witness w.

Example 7.4.2 (VEO table prefix and VEO table prefix instance) Consider
again the VEO 𝑣 = 𝑧← (𝑢, 𝑦← 𝑥) in Example 7.4.1. The table prefix
of table 𝑆(𝑦, 𝑧) on 𝑣 is 𝑣𝑆 = 𝑧← 𝑦. Assume a set of two witnesses
𝑊 = {(𝑥1 , 𝑦1 , 𝑧1 , 𝑢1), (𝑥1 , 𝑦1 , 𝑧1 , 𝑢2)}. Then for both witnesses w1 and
w2, the table prefix instances for 𝑆 are identical: 𝑣𝑆⟨w1⟩ = 𝑣𝑆⟨w2⟩ =
𝑧1← 𝑦1 (Figure 7.6c).

Definition 7.4.4 (VEO factorization forest (VEOFF)) A VEOFF Vof prove-
nance 𝜑𝑝 of database D over query 𝑄 is a forest whose nodes are labeled
with non-empty sets of domain-annotated variables, such that: (1) For every
w ∈ witnesses(𝑄, 𝐷) there exists exactly one subtree in V that is a VEO
instance of w and 𝑄; (2) There is no strict sub-forest of V that fulfills
condition (1).

Example 7.4.3 (VEO Factorization Forest) Continuing with the 𝑄∞3
query, and the witnesses 𝑊 = {(𝑥1 , 𝑦1 , 𝑧1 , 𝑢1), (𝑥1 , 𝑦1 , 𝑧1 , 𝑢2)} as in
Example 7.4.2, we illustrate several valid and invalid VEOFFs. We
represent a forest of VEO instances in-text as a set of trees {𝑡1 , 𝑡2 , ...}.
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The forest V1 = {𝑥1← (𝑢1 , 𝑢2 , (𝑦1 ← 𝑧1))} (Figure 7.6d) is a valid VEOFF
since (1) for both 𝑤1 and 𝑤2 there is exactly one subtree each in V

that is a VEO instance. These subtrees are 𝑥1← (𝑢1 , (𝑦1 ← 𝑧1)) and
𝑥1← (𝑢1 , (𝑦1 ← 𝑧1)). This VEOFF also satisfies property (2) removing
any variable would lead to a VEOFF that does not satisfy property (1).

The forest V2 = {𝑥1 ← (𝑢1 , (𝑦1 ← 𝑧1)), 𝑦1 ← (𝑧1 , (𝑥1 ← 𝑢1))} (Fig-
ure 7.6e) is also a valid VEOFF since (1) for both 𝑤1 and 𝑤2 there is
exactly one subtree each in V that is a VEO instance. These subtrees are
𝑥1← (𝑢1 , (𝑦1 ← 𝑧1)) and 𝑦1← (𝑧1 , (𝑥1 ← 𝑢2)). This VEOFF also satisfies
property (2) removing any variable would lead to a VEOFF that does
not satisfy property (1).

The forest V3 = {𝑥1← (𝑢1 , (𝑦1 ← 𝑧1)), 𝑦1← (𝑧1 , (𝑥1 ← 𝑢1 ← 𝑢2))}
(Figure 7.6f) is not a valid VEOFF, although it satisfies property (1) with
the same subtrees above. It does not satisfy property (2) since removing
𝑢2 in the second tree would lead to a VEOFF that still satisfies property
(1).

Theorem 7.4.1 (Factorizations and VEOs) There exist transformations from
FTs to VEOFFs and back such that the transformations can recover the original
FT for at least one minimal size FT 𝜑′ of any provenance formula 𝜑𝑝 .

Proof Intuition. We describe a transformation from FTs to VEOFFs via
domain-annotated FTs as intermediate step (Figure 7.3). A domain-
annotated FT is constructed as follows: We first replace the ⊗ operator
with a join (⊲⊳) and the ⊕ operator with a projection (𝜋) and label the
leaves with the domain-annotated variables. We then recursively label
each join and projection bottom-up as follows: (1) label each ⊲⊳ by the
union of variables of its children, and (2) label each 𝜋 with the subset of
variables of its children that are not required for subsequent joins (this
can be inferred from the query). To get the VEOFF instance, we remove
all variables on joins that appear in ancestor joins. We remove the leaves
and absorb all non-join (projection) nodes into their parents (eliminating
the root projection node).

We show that if this transformation succeeds then it is a bĳection and
can be reversed. The only case when this transformation fails is when it
results in an empty annotation for a node, i.e. when there is a join after
which no variable is projected away (since by design VEOs do not permit
empty nodes). In that case, the FT can always be simplified by removing
a ⊕ node and merging two ⊗ nodes.

Proof Theorem 7.4.1. We first describe in Algorithm 1 a partial mapping
from a factorization tree (FT) to a VEO factorization forest (VEOFF). Note
that such a transformation may result in an error if it does not succeed.
We show that this process is always reversible if it succeeds. We then
show that for at least one minimal FT of any provenance formula 𝜑𝑝 ,
such a transformation succeeds, and is thus also reversible.

Algorithm 1 returns a structure consistent with the definition of a VEO
factorization forest since (1) for each witness there is a unique VEO
instance in the VEOFF corresponding to sequence of ⊕ and ⊗ operations
that evaluated to the witness in the FT, (2) taking away any variable from
the structure would remove at least once VEO instance (corresponding to
a witness of the literal the variable is derived from), hence the VEOFF is
minimal in line with the required definition.
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If the Algorithm 1 does indeed return a VEOFF, then we can show that
this transformation is always reversible by applying the transformation
detailed in Algorithm 2. We can prove step-by-step that the Algorithm 2
recovers the same FT as the one that was used to construct the VEOFF. We
see that the relationship between ⊗ nodes in the factorization trees is
never modified in the transformation to the VEOFF, and hence substituting
the nodes of the VEOFF with ⊗ nodes directly recovers the ⊗ relationships.
Due to the alternating operators in the factorization trees, we can also
recover the ⊕ nodes by placing them between ⊗ nodes. The leaves can be
recovered from the table prefix instances. Since in the transformation to
VEOFFs we projected away variables “as soon as possible”, the VEO table
prefix instances can recover losslessly where each tuple was joined in the
original factorization tree.

However, consider that Algorithm 1 returns an error for a given FT. Then
there exists a join node 𝑛 in the “reduced” annotated FT built during
Algorithm 1 that is not annotated. This happens when all the variables
at that join node are used in subsequent joins. Like in Algorithm 1, let
D be the relations of the descendant leaves of 𝑛 and 𝑄′ be the query
obtained by removing atoms from 𝑄 that correspond to relations in D.
We also define 𝑄′′ as the query obtained by keeping only atoms from
𝑄 that correspond to relations in D. Thus, 𝑄 is split into 𝑄′ and 𝑄′′. If
we have an error condition, there is a set of relations R in 𝑄′ that is a
superset of var(𝑄′′). We see that the factorization length cannot increase
if we merge the joins of the relations R with the relations of 𝑄′′. We can
now try the transformation again on the new FT with the merged joins.
We can repeat this process until we have a FT that does not result in an
error. We know that we always make progress since the merging of joins
reduces the number of internal nodes of the FT.

Example 7.4.4 (Instance where a FT cannot be transformed to a VEOFF)
Consider the factorization tree ⊗(𝑠11 ,⊕(⊗(𝑟1 , 𝑡1))) for the 𝑄★

2 query
over the simple database with 3 tuples 𝑅(1), 𝑆(1, 1), 𝑇(1).

The join node that is the parent of 𝑟1 and 𝑠1 is annotated with 𝑥1 and
𝑦1. However, both these variables are also required at the join node
with 𝑠11 and so cannot be projected away. Thus, in the step where
we reduce the join annotations in Algorithm 1, both 𝑥1 and 𝑦1 are
removed from the deeper join node, leading to an empty annotation.
The transformation thus fails.

We can see intuitively that this is due to the fact a join is performed
on two relations whose variables are subsumed by the variables of
another relation. The joins can thus be reordered without increasing
the size of the factorization tree.

7.4.2 Bĳection Between VEOs and Query Plans

Intuitively, VEOs capture the sequence of variables projected away in a
query plan. To make this bĳection clear, we define notation around query
plans and give an example.

Query plans. A query plan𝑃 is given by the grammar𝑃 ::= 𝑅𝑖(x) | 𝜋−x𝑃 |Z
(𝑃1 , . . . , 𝑃𝑘) where 𝑅𝑖(x) is an atom containing the variables x, 𝜋−x is
the project-away operator with duplicate elimination (𝑥 here is the set of
variables being removed), and Z( . . . ) is the natural join in prefix notation,
which we allow to be 𝑘-ary (𝑘 ≥ 2).
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Algorithm 1: Transformation of a factorization tree to a VEO factorization
forest
Input :A factorization tree FT over provenance formula 𝜑𝑝 of query 𝑄

Result: A VEOFF or an error
/* Build annotated factorization tree: */

1 Replace ⊗ nodes with a join (⊲⊳) and ⊕ nodes with a projection (𝜋)
/* Annotating the nodes from the leaves to root */

2 while ∃ a node 𝑛 that is not annotated do
3 if 𝑛 is a leaf node then
4 Annotate with annotated-domain variables of the tuple at the leaf
5 if Join node then
6 Annotate with the union of the annotations of the children of 𝑛
7 if Projection node then
8 𝑣 = union of annotations of the children of 𝑛
9 D= set of all relations of descendants of 𝑛

10 𝑄′ = query obtained by removing atoms from 𝑄 that correspond to
relations in D

11 𝑣′ = The annotated-domain variables in 𝑣 that do not correspond to
variables of var(𝑄′) /* These are the variables that can be

projected away since they do not feature in any subsequent

joins 𝑄′ */

12 Annotate 𝑛 with 𝑣′

/* Reduce the join annotations: */

13 if 𝑣 is a variable that is part of the annotation of a join node 𝑛 then
14 if ∃𝑛′ that is an ancestor of 𝑛 and contains 𝑣 then
15 Remove 𝑣 from 𝑛

16 if A join node has no annotation after minimization then
17 return Error

/* Extract the join annotations: */

18 From the annotated FT, build a forest of join nodes where the parent of a
join node is its grandparent in the FT (thus skipping over 𝜋 nodes)

19 Replace join nodes with the annotations obtained after the minimization
step to obtain a VEOFF

20 return The constructed VEOFF

Algorithm 2: Transformation of a factorization tree to a VEO factorization
forest
Input :A VEOFF built from a FT via Algorithm 1
Result: The original FT
/* Re-add literals to the VEOFF */

1 Identify the paths in the VEOFF that correspond to table prefix instances
2 if Node 𝑛 is the leaf of a table prefix instance then
3 Add a child to 𝑛 corresponding to the tuple represented by the table

prefix instance
/* Re-add ⊕ and ⊗ nodes */

4 Replace each node in the VEOFF with a ⊗ node
5 Add a ⊕ node as a child for every ⊗ node
6 Replace the parent of each ⊗ node with the ⊕ child of the original parent
7 if there were multiple trees in the VEOFF then
8 Add an ⊕ node as the parent of all the root ⊗ nodes
9 return The reconstructed FT
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Figure 7.4: Example 7.4.5: A query
plan 𝑃 and the corresponding VEO
𝑣.
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We require that joins and projections alternate in every plan. This is
w.l.o.g. because nested joins, such as Z(Z(𝑅, 𝑆), 𝑇) or Z(𝑅,Z(𝑆, 𝑇)),
can be rewritten into Z (𝑅, 𝑆, 𝑇) while keeping the same provenance
by associativity, e.g., (𝑟1𝑠2)𝑡3 = 𝑟1(𝑠2𝑡3). For the same reason, we do
not distinguish between different permutations in the joins, called join
orders [124]. Thus, in contrast to standard query plans, our query plans
do not necessarily form binary trees.

An important type of query plan is the hierarchical plan. If a query has a
hierarchical plan, then this plan can be used to always produce read-once
factorized provenance polynomials [127] (and thus the minimum size
factorization). Only hierarchical queries have hierarchical plans.

Notation Related to Query Plans. We write var(𝑃) for all variables in a
plan 𝑃 and HVar(𝑃) for its head variables, which are recursively defined
as follows: (1) if 𝑃 = 𝑅𝑖(x), then HVar(𝑃) = x; (2) if 𝑃 = 𝜋x(𝑃′), then
HVar(𝑃) = x; and (3) if 𝑃 =Z(𝑃1 , . . . , 𝑃𝑘) then HVar(𝑃) =

⋃𝑘
𝑖=1 HVar(𝑃𝑖).

The existential variablesEVar(𝑃) are then defined asvar(𝑃)−HVar(𝑃). Every
plan 𝑃 represents a query 𝑄𝑃 defined by taking all atoms mentioned in
𝑃 as the body and setting HVar(𝑄𝑃) = HVar(𝑃). A plan is called Boolean
if HVar(𝑃) = ∅. For notational convenience, we also use the “project-away
operator” 𝜋−y𝑃 instead of 𝜋x𝑃, where y are the variables being projected
away, i.e. x = HVar(𝜋−y𝑃) = HVar(𝑃) − y.

Legal Query Plans. We assume the usual sanity conditions on plans to be
satisfied: for a projection 𝜋x𝑃 we assume x ⊆ HVar(𝑃), and each variable
𝑦 is projected away at most once in a plan, i.e. there exists at most one
such operator 𝜋−x s.t. 𝑦 ∈ x. We also assume that at least one variable is
projected away at each projection operator, i.e. for all 𝜋−x s.t. x ̸= ∅. We
call any such plan legal.

Example 7.4.5 (Query Plans and Variable Elimination Orders) Consider
the 3-chain Query 𝑄∞3 :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑢) and the legal query
plan 𝑃 = 𝜋−𝑧 Z (𝜋−𝑦 Z (𝜋−𝑥𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧)),𝜋−𝑢𝑇(𝑧, 𝑢)), also shown
in Figure 7.4a. The corresponding VEO 𝑣 is shown in Figure 7.4b.
In order to refer to a particular VEO, we use a linear notation with
parentheses representing sets of children i.e. Figure 7.4b can be written
as 𝑣 = 𝑧← (𝑢, 𝑦←𝑥). To make it a unique serialization, we only need to
assume an ordering on the children of each parent, which we achieve
by using the alphabetic ordering on the variables. Notice that our
definition of VEO also allows sets of variables as nodes. As an extreme
example, the legal query plan 𝑃′ = 𝜋−𝑥𝑦𝑧𝑢 Z(𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑦))
corresponds to a VEO 𝑣′ with one single node containing all variables.
In our short notation, we denote nodes with multiple variables in
brackets without commas between the variables in order to distinguish
them from children: 𝑣′ = {𝑥𝑦𝑧𝑢}.

Notice that also minimal VEOs can have multiple variable in a node (e.g.
{𝑦𝑧}←𝑥 for query 𝑄△).
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𝑥 𝑢

𝑦 𝑧

𝑤 𝑣1 1
2 3

2 3

(a) 𝑣1

𝑥 𝑢 𝑤 𝑣
1 1 2 3

𝑥 𝑢 𝑦 𝑧
1 1 2 3

(b) 𝑣1 split into paths
Figure 7.5: The VEO split operation
in Example 7.4.7

7.4.3 Details and Examples: VEO Instances, Table Prefixes
and Factorization Forests

In this section, we include Figure 7.6, which illustrates the VEOs and
VEOFFs mentioned in Examples 7.4.1 to 7.4.3.

We can also define intuitive “merging” and “splitting” operations on
VEOs. The merge operation (Example 7.4.6) takes two VEO instance forests
and combines any trees in the forests if they share path(s) from the root.

Definition 7.4.5 (VEO Merge) A merge operation on one or more VEO
instances or VEO instance forests V1 and V2 outputs a new VEO instance forest
V such that: (1) All VEO instances in V1 and V1 are also present in V. (2)
There are no two trees 𝑡1 , 𝑡2 ∈ V such that 𝑡1 and 𝑡2 share a prefix for any
variable that is in 𝑡1 and 𝑡2.

Example 7.4.6 (Merging VEO instances) Consider the two VEO instances
𝑣w1 = 𝑥1← 𝑦1← 𝑧1 and 𝑣w2 = 𝑥1← 𝑦1← 𝑧2. Then merging 𝑣w1 and
𝑣w2 would result in the instance 𝑥1← 𝑦1← (𝑧1 , 𝑧2), since the common
rooted path 𝑥1← 𝑦1 in both VEOs can be combined.

On the other hand, 𝑣w3 = 𝑥1← 𝑦1← 𝑧1 and 𝑣w4 = 𝑥2← 𝑦1← 𝑧1 have
no common rooted path, and their merger results in simply the forest
{𝑥1← 𝑦1← 𝑧1, 𝑥2← 𝑦1← 𝑧1}.

Another example is merging the VEO instances 𝑣w5 = 𝑦1← (𝑥1 , 𝑧1)
and 𝑣w6 = 𝑦1← (𝑥2 , 𝑧2) results in combining the shared path 𝑦1←
((𝑥1 , 𝑥2), (𝑧1 , 𝑧2)). Notice that this includes the VEO instances 𝑦1 ←
(𝑥2 , 𝑧1) and 𝑦1← (𝑥1 , 𝑧2), which must be present in the data anyway
due to join dependencies.

We can also merge VEO instances from different VEOs. The merger of
𝑣w7 = 𝑥1← 𝑦1← 𝑧1 and 𝑣w8 = 𝑥1← 𝑧2← 𝑦2 leads to 𝑥1← (𝑦1←
𝑧1 , 𝑧2← 𝑦2).

The splitting operation (Example 7.4.7 and Figure 7.5) splits a VEO with
more than one leaf into nested paths from the root to the leaves. This
property is useful to define nested prefix orderings in Subsection 7.6.1.

Definition 7.4.6 (VEO Split) A split operation on a VEO instance outputs
the set of root-to-leaf paths in the VEO instance.

Example 7.4.7 (Splitting VEO instances) The VEO 𝑥1← (𝑦1 , 𝑧1) can be
split into nested paths 𝑥1← 𝑦1 and 𝑥1← 𝑧1.
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𝑧

𝑢

𝑦 𝑥

RS

T
(a) An example VEO 𝑣 for 𝑄★

2

𝑧3

𝑢4

𝑦2 𝑥1
RS

T
(b) An example VEO instance 𝑣w for 𝑄★

2
where w = (𝑥1 , 𝑦2 , 𝑧3 , 𝑢4)

𝑧1 𝑦1
(c) An example VEO table prefix instance

𝑣𝑆w for 𝑄★
2

𝑥1

𝑢1

𝑢2

𝑦1 𝑧1

(d) VEO Factorization Forest (VEOFF)
V1 =

[𝑥1← (𝑢1 , 𝑢2 , (𝑦1 ← 𝑧1))]

𝑦1 𝑥1

𝑥2

𝑦2

𝑦3

(e) VEO Factorization Forest (VEOFF)
V2 =

[𝑥1← (𝑢1 , (𝑦1 ← 𝑧1)); 𝑦1← (𝑧1 , (𝑥1 ←
𝑢1))]

𝑥1
𝑦1 𝑧1

𝑢1

𝑦1

𝑧1

𝑥1
𝑢1 𝑢2

(f) An invalid VEO Factorization Forest
(VEOFF)

V3 = [𝑥1← (𝑢1 , (𝑦1 ← 𝑧1)); 𝑦1←
(𝑧1 , (𝑥1 ← 𝑢1 ← 𝑢2))]

Figure 7.6: Examples 7.4.1 to 7.4.3:
Examples of VEO instances, VEO table
prefix instances and VEO factoriza-
tion forests
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7.4.4 Connections of VEOs to Related Work

Connection to FBDs. Our definition of VEOs parallels the definition of
variable orders defined in Factorized Databases [129, 132], however has
two key differences: (i) we do not allow any caching in the variable order,
and (ii) we allow multiple variables in each node of the VEO.

Thus, we allow the {𝑦𝑧}←𝑥, while an FDB style definition would force
every factorization to choose between 𝑦← 𝑧←𝑥 and 𝑧← 𝑦←𝑥.

We see that using multiple variables in each node of the VEO allows us
to build a more restricted search space, since some VEOs with multiple
variables in the nodes are minimal VEOs (defined through notions of
minimal query plans [65], later described in Subsection 7.4.6). An example
of a query with such a minimal VEO is the triangle unary query 𝑄△

𝐴
(Example 7.4.8).

Connection to Knowledge Representation. We can draw a parallel be-
tween VEOs and VEO instances as the notion of v-trees and DNNF formulas
in knowledge compilation [133], as the v-trees and VEOs both capture the
structure of the data in the VEO instance or DNNF, respectively.

Theorem 7.4.2 (minFACT with VEOs) There exists a transformation that
constructs FTs of a provenance 𝜑𝑝 from mappings of each witness of 𝜑𝑝 to a
VEO of 𝑄, and there exists a mapping that is transformed into a minimal size
factorization tree 𝜑′ of 𝜑𝑝 under this transformation.

Proof Intuition. From Theorem 7.4.1, we know that for every provenance
formula 𝜑𝑝 there exists a minimal size FT that has a reversible trans-
formation to a VEOFF. We show all such VEOFFs can be constructed by
assigning a VEO to each witness of 𝜑𝑝 . This is constructed by defining a
merge operation on VEOs that greedily merges common prefixes.
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1: This follows from the fact that the
number of witnesses is polynomial in
the size of the database, and the number
of VEOs only depends on the query size.
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imate lifted inference with standard re-
lational database management systems’.
doi:10.1007/s00778-016-0434-5
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[66]: Gatterbauer and Suciu (VLDBJ, 2017),
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imate lifted inference with standard re-
lational database management systems’.
doi:10.1007/s00778-016-0434-5

Proof Theorem 7.4.2. Through Theorem 7.4.1, we know that for any prove-
nance formula 𝜑𝑝 there exists a minimal size FT that has a correspondence
to a VEOFF. We show all such VEOFFs can be constructed by assigning a
VEO to each witness of 𝜑𝑝 . From the assignment of VEOs to each witness,
we are able to construct the corresponding VEO instances. We use the
merge operation (Definition 7.4.5) on VEO instances greedily to merge
common prefixes. The merge operation is both commutative and asso-
ciative, and no matter the order of merging, all |w| VEO instances will
produce exactly the same forest after merging. This resulting forest is the
VEOFF corresponding to the minimal FT, since (1) it contains a VEO instance
for each witness of 𝜑𝑝 (2) it cannot be made smaller since the merge
operation maximally merges all shared prefixes. Since we can build a
VEOFF corresponding to a minimal formula of 𝜑𝑝 from the assignment of
VEOs to witnesses, we can also FT corresponding to a minimal formula of
𝜑𝑝 through the reverse transformation Algorithm 2.

Minimal Variable Elimination Orders (mveo). By reducing the problem
of finding the minimal factorization to that of assigning a VEO to each
witness, we have so far shown that FACT is in NP with respect to data
complexity.1 However, we can obtain a more practically efficient result by
showing that we need not consider all VEOs, but only the Minimal Variable
Elimination Orders of a query or mveo(𝑄). We can define a partial order
⪯ on VEOs of a query 𝑄 as follows: 𝑣1 ⪯ 𝑣2 if for every relation 𝑅𝑖 ∈ 𝑄
the variables in the 𝑅𝑖 table prefix of 𝑣1 are a subset of the variables of
the 𝑅𝑖 table prefix of 𝑣2, i.e. ∀𝑅𝑖 ∈ 𝑄 : var(𝑣𝑅𝑖

1 ) ⊆ var(𝑣𝑅𝑖

2 ). mveo(𝑄) then
is the set of all VEOs of 𝑄 that are minimal with respect to this partial
order ⪯. For 𝑄★

2 , there are only two minimal variable elimination orders
𝑥← 𝑦 and 𝑦← 𝑥, but not {𝑥, 𝑦}, and for 𝑄★

3 , there are only 6, despite
13 possible VEOs in total. Interestingly, mveo(𝑄) corresponds exactly to
Minimal Query Plans as defined in work on probabilistic databases [66],
and we can use this connection to leverage prior algorithms for computing
mveo(𝑄).

Theorem 7.4.3 (minFACT with mveos) There exists a transformation that
constructs FTs of a provenance 𝜑𝑝 from mappings of each witness of 𝜑𝑝 to
a VEO 𝑣 ∈ mveo(𝑄), and there exists a mapping that is transformed into a
minimal size factorization tree 𝜑′ of 𝜑𝑝 under this transformation.

Proof Theorem 7.4.3. We know from Theorem 7.4.2 that a minimal fac-
torization tree can be constructed by assigning VEOs to each witness. It
now remains to be shown that using non-minimal VEOs (correspond-
ing to non-minimal query plans) cannot make the factorization smaller
than if just minimal VEOs are used. Assume that the factorization uses
a non-minimal query plan P’, which corresponds to the dissociation ∆′.
Since it is not minimal there must exist a dissociation ∆ where ∆ ⪯ ∆′.
This means that the provenance (of D, or simply a subset of witnesses)
calculated with 𝑃′ is a dissociation of the provenance calculated with 𝑃,
which means that each variable occurs at least as many times in 𝜑(𝑃∆′ )
as in 𝜑(𝑃∆) [65].

7.4.5 End to End Example: Query Plans, VEOs and
Factorizations

Example 7.4.8 gives an end-to-end example that shows a query, its
minimal hierarchical dissociations [66], the corresponding minimal query
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plans, the VEOs, and the factorizations that each VEO corresponds to. This
example is also interesting since it shows minimal VEOs that have multiple
variables in a node; this is not permitted in prior definitions of VEOs such
as [45, 129].

Example 7.4.8 (Triangle unary 𝑄△
𝐴

) Consider the triangle unary query
𝑄△

𝐴
:−𝑈(𝑥), 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥). Notice that this query is not hier-

archical: at(𝑦) = {𝑅, 𝑆} and at(𝑧) = {𝑆, 𝑇}, which is not allowed in a
hierarchical query. Thus, it does not have a hierarchical plan, and we
know that a database instance under this query is not guaranteed to
have a read-once factorization.

Thus, to obtain the minimal factorization, we consider all its minimal
hierarchical dissociations [66] [66]: Gatterbauer and Suciu (VLDBJ, 2017),

‘Dissociation and propagation for approx-
imate lifted inference with standard re-
lational database management systems’.
doi:10.1007/s00778-016-0434-5

, which correspond to the minimal query
plans and minimal VEOs. This query has 3 such minimal dissociations,
shown in Figure 7.7 as incidence matrices, query plans, mveos, and
factorizations. The objective is now to assign each witness to exactly
one of these 3 minimal dissociations. Here the incidence matrix is a
simple visual representation of the variables, atoms, and variables
contained in each atom. Recall the intuition for dissociations of adding
variables to atoms.

Notice that 𝑣1 = {𝑦, 𝑧}← 𝑥 would not be permitted in an FDB-style
variable ordering, which requires a single variable at each level of the
tree [129, Definition 3.2] [129]: Olteanu and Schleich (SIGMOD

Rec. 2016), ‘Factorized Databases’.
doi:10.1145/3003665.3003667

. Thus it would require 𝑣1 to be split into 2
different query plans 𝑦← 𝑧← 𝑥 and 𝑧← 𝑦← 𝑥. Our approach takes
into account concurrent variable elimination and hence can reduce the
search space for minimal factorizations in this case.

7.4.6 Details about Minimal VEOs

We show a connection between minimal VEOs and minimal query plans
from [65]. To do this, we leverage a correspondence of VEOs to query plans
and the previously defined notion of dissociations from probabilistic
databases [65].

Intuitively, the goal of dissociations in probabilistic inference [65] is to
obtain better inference bounds, by converting it to a hierarchical query, for
which inference is easy. Our purpose in using dissociations is in the same
spirit - we know that hierarchical queries have read-once factorizations,
and hence we would like to use dissociations to obtain a dissociated
database on which we can obtain the original provenance by using the
dissociated query.

We here recap the key notions of dissociations from [65] and provide
examples. But first, we add some more detail on provenance computation
from query plans and hierarchical query plans.

Provenance computation from Query Plans. We slightly adapt our
previous definition of query plans to “provenance query plans.” Each
sub-plan 𝑃 now returns an intermediate relation of arity |HVar(𝑃)|+1. The
extra provenance attribute stores an expression 𝜑 for each output tuple
𝑡 ∈ 𝑃(𝐷) returned from a plan 𝑃.

Given a database Dand a plan 𝑃, 𝜑 is defined inductively on the structure
of 𝑃 as follows: (1) If 𝑡 ∈ 𝑅𝑖(x), then 𝜑(𝑡) = 𝜑𝑡 , i.e. the provenance token
of 𝑡 in D; (2) if 𝑡 ∈Z (𝑃1(𝐷), . . . , 𝑃𝑘(𝐷)) where 𝑡 =Z (𝑡1 , . . . , 𝑡𝑘), then
𝜑(𝑡) =

∧𝑘
𝑖=1 𝜑(𝑡𝑖); and (3) if 𝑡 ∈ 𝜋x𝑃(𝐷), and 𝑡1 , . . . , 𝑡𝑛 ∈ 𝑃(𝐷) are all the
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tuples that project onto 𝑡, then 𝜑(𝑡) = (∨𝑛
𝑖=1 𝜑(𝑡𝑖)) (notice the required

outer parentheses). For a Boolean plan 𝑃, we get one single expression,
which we denote 𝜑(𝑃, 𝐷).

Hierarchical Query Plans. An important type of plan is the hierarchical
plans. Intuitively, if a query has a hierarchical plan, then this plan can be
used to always produce read-once factorized provenance polynomial [127]
(and thus the minimum size factorization). The only queries that have
hierarchical plans are the hierarchical queries.

Definition 7.4.7 (Hierarchical query [39]) A query 𝑄 is called hierarchical
iff for any two existential variables 𝑥, 𝑦, one of the following three conditions
holds: at(𝑥) ⊆ at(𝑦), at(𝑥) ⊇ at(𝑦), or at(𝑥) ∩ at(𝑦) = ∅ where at(𝑥) is
the set of atoms of 𝑄 in which 𝑥 participates.

Definition 7.4.8 (Hierarchical plan) A plan 𝑃 is called hierarchical
iff, for each join Z (𝑃1 , . . . , 𝑃𝑘), the head variables of each sub-plan 𝑃𝑖

contain the same existential variables of plan 𝑃: HVar(𝑃𝑖) ∩ EVar(𝑃) =
HVar(𝑃𝑗) ∩ EVar(𝑃), ∀𝑖 , 𝑗 ∈ [𝑘]

Example 7.4.9 (Hierarchical Queries) The 2-chain query𝑄∞2 :− 𝑅(𝑥, 𝑦),
𝑆(𝑦, 𝑧) is a hierarchical query since for each pair of variables 𝑎, 𝑏 either
at(𝑎) and at(𝑏) are disjoint (like the variables 𝑥 and 𝑧, since at(𝑥) = {𝑅}
and at(𝑧) = {𝑆}) or have a subset relationship (like at(𝑥) = {𝑅} and
at(𝑦) = {𝑅, 𝑆}).
However, the 3-chain query 𝑄∞3 :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑢) is not hi-
erarchical since at(𝑦) = {𝑅, 𝑆} and at(𝑧) = {𝑆, 𝑇} and these are
overlapping sets with neither being a subset of the other.

Example 7.4.10 (Hierarchical Plan) Consider two query plans for the
query 𝑄∞2 in Figure 7.8.

The query plan 𝑃2 is not a hierarchical plan since for the sub-plan
Z (𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧)) the head variables for 𝑅(𝑥, 𝑦) are {𝑥, 𝑦} and for
𝑆(𝑦, 𝑧) they are {𝑦, 𝑧}. Thus, they contain different sets of existential
variables of 𝑃2.

However, in 𝑃1, at the only join Z (𝜋−𝑥𝑅(𝑥, 𝑦),𝜋−𝑧𝑆(𝑦, 𝑧)), the head
variables of both subplans 𝜋−𝑥𝑅(𝑥, 𝑦) and 𝜋−𝑧𝑆(𝑦, 𝑧) are the same set
{𝑦}, so the plan is hierarchical.

Query Dissociation [66, Section 3.1]. We leverage the previously defined
idea of query dissociation to generate query plans that “come as close as
possible” to hierarchical plans, to help find the minimal factorization for
queries that are not read-once.

A query dissociation is a rewriting of both the data and the query by
adding variables to atoms in the query. In this paper, we care only about
hierarchical dissociations, i.e. dissociations s.t. the rewritten dissociated
query plan is hierarchical. Dissociations can be compared with a partial
order, and for our problem, we only care about minimal hierarchical
dissociations and their corresponding plans, known as minimal query
plans. There exists an algorithm that can find all such minimal query
plans [66], and we assume them as input.

94

https://doi.org/10.1007/978-3-540-87993-0_26
https://doi.org/10.1007/s00778-016-0434-5


7 Minimal Factorization of Provenance Formulas

[66]: Gatterbauer and Suciu (VLDBJ, 2017),
‘Dissociation and propagation for approx-
imate lifted inference with standard re-
lational database management systems’.
doi:10.1007/s00778-016-0434-5

[66]: Gatterbauer and Suciu (VLDBJ, 2017),
‘Dissociation and propagation for approx-
imate lifted inference with standard re-
lational database management systems’.
doi:10.1007/s00778-016-0434-5

Definition 7.4.9 (Query dissociation) Given a query 𝑄(z) :−𝑅1(x1),
. . . , 𝑅𝑚(x𝑚). Let ∆ = (y1 , . . . , y𝑚) be a collection of sets of variables with
y𝑖 ⊆ EVar(𝑄) − x𝑖 for every relation 𝑅𝑖 . The “dissociated query” defined
by ∆ is then 𝑄∆(z) :−𝑅y1

1 (x1 , y1), . . . , 𝑅y𝑚
𝑚 (x𝑚 , y𝑚) where each 𝑅

y𝑖

𝑖
(x𝑖 , y𝑖)

is a new relation of arity |x𝑖 |+|y𝑖 |.

Example 7.4.11 (Query Dissociation) Consider the non-hierarchical
query of 𝑄∞3 :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑢) again. Consider the dissocia-
tion ∆ = ({𝑧}, {}, {}). Then the dissociated query is 𝑄★

3
∆ :−𝑅(𝑥, 𝑦, 𝑧),

𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑢).

Intuitively, the goal of dissociations in probabilistic inference [66] is to
obtain better inference bounds, by converting it to a hierarchical query, for
which inference is easy. Our purpose in using dissociations is in the same
spirit - we know that hierarchical queries have read-once factorizations,
and hence we would like to use dissociations to obtain a dissociated
database on which we can obtain the original provenance by using the
dissociated query.

Hierarchical Dissociation.

Definition 7.4.10 (Hierarchical dissociation) A dissociation ∆ of a query
𝑄 is called hierarchical if the dissociated query 𝑄∆ is hierarchical. We denote
the corresponding hierarchical plan applied over the original relations 𝑃∆.

For every sf-free CQ, there is an isomorphism between the set of query
plans and the set of hierarchical dissociations [66]. Thus we can restrict
the dissociations we consider to hierarchical dissociations.

Example 7.4.12 (Hierarchical Dissociation) Consider again the non-
hierarchical query of 𝑄∞3 and its dissociation ∆ = ({𝑧}, {}, {}) from
Example 7.4.11. Then the dissociated query 𝑄★

3
∆ :−𝑅(𝑥, 𝑦, 𝑧), 𝑆(𝑦, 𝑧),

𝑇(𝑧, 𝑢) is hierarchical as all pairs of variables satisfy the constraint for
hierarchical queries. Thus ∆ is a hierarchical dissociation.

Partial Dissociation Orders. The number of dissociations to be consid-
ered can be further reduced by exploiting an ordering on the dissocia-
tions.

Definition 7.4.11 (Partial dissociation order) Given two dissociations
∆ = (y1 , . . . , y𝑚) and ∆′ = (y′1 , . . . , y

′
𝑚). We define the partial order on the

dissociations of a query as: ∆ ⪯ ∆′ ⇔ ∀𝑖 : y𝑖 ⊆ y′
𝑖
.

A minimal hierarchical dissociation is one such that no smaller dissocia-
tion is hierarchical.

Example 7.4.13 (Partial Dissociation Order) For 𝑄∞3 , the dissociation
∆ = ({𝑧}, {}, {}) is a minimal hierarchical dissociation while ∆′ =
({𝑧}, {}, {𝑦}) is hierarchical but not minimal.

Additionally, we can say that ∆ ⪯ ∆′.

Equivalence of mveo(𝑄) and Minimal Query Plans. In Section 7.4, we
defined minimal VEOs based on a partial order ⪯ defined via the size of
table prefixes. We show that this partial order corresponds to the partial
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dissociation order, and hence we can obtain a direct correspondence
between mveo(𝑄) and Minimal Query Plans (due to the fact that all
VEOs correspond to query plans through the bĳection explained in
Subsection 7.4.2). The variables of table-prefix of 𝑅 always contain the
variables of 𝑅, plus additional variables that are used in joins with 𝑅.
If these “additional” variables of each table-prefix are added to the
respective relations, then the resulting query is hierarchical since every
atom already contains all the variables that are used in joins with them.
In other words, the additional variables in the table-prefixes correspond
exactly to a hierarchical dissociation of the query. We can see then that the
partial order on VEOs is exactly the same as the partial dissociation order
since both look at the variables in the table-prefixes / dissociations.
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Fig_queryplan_triangleunary_{1..3} 230608

π−𝑦𝑦,𝑧𝑧⨝
𝑆𝑆(𝑦𝑦, 𝑧𝑧)

𝑅𝑅(𝑥𝑥,𝑦𝑦)
𝑇𝑇(𝑧𝑧, 𝑥𝑥)

π−𝑥𝑥⨝ π−𝑥𝑥⨝
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𝑇𝑇(𝑥𝑥, 𝑧𝑧)
π−𝑧𝑧⨝ 𝑆𝑆(𝑦𝑦, 𝑧𝑧)

π−𝑦𝑦⨝ 𝑅𝑅(𝑥𝑥,𝑦𝑦)
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𝑦𝑧 𝑆(𝑦, 𝑧)[

∨
𝑥 𝑈(𝑥), 𝑅(𝑥, 𝑦), 𝑇(𝑥, 𝑧)]

(k) Factorization 1

∨
𝑥 𝑈(𝑥)[

∨
𝑦 𝑅(𝑥, 𝑦)[

∨
𝑧 𝑆(𝑦, 𝑧), 𝑇(𝑥, 𝑧)]]

(l) Factorization 2

∨
𝑥 𝑈(𝑥)[

∨
𝑧 𝑇(𝑥, 𝑧)[

∨
𝑦 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧)]]

(m) Factorization 3

Figure 7.7: Example 7.4.8: For the triangle unary query 𝑄△
𝐴

:−𝑈(𝑥), 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥), we show the incidence graph
matrix (a), the three minimal dissociations (b)-(d), corresponding three minimal query plans (e)-(g), three minimal VEOs
(h)-(j), and factorizations (k)-(m).

𝜋−𝑦 Z

𝜋−𝑥𝑅(𝑥, 𝑦)

𝜋−𝑧𝑆(𝑦, 𝑧)

(a) Query Plan 𝑃1

𝜋−𝑥𝑦𝑧 Z

𝑅(𝑥, 𝑦)

𝑆(𝑦, 𝑧)

(b) Query Plan 𝑃2

Figure 7.8: Example 7.4.10: Two legal
query plans for 𝑄∞2 . 𝑃1 is a hierar-
chical minimal plan while 𝑃2 is not.
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7.5 ILP Formulation for minFACT

Given a set of witnesses 𝑊 = witnesses(𝑄, 𝐷) for a query 𝑄 over some
database D, we can use the insight of Theorem 7.4.3 to describe a 0-1
Integer Linear Program (ILP) ILP[minFACT] (7.2) that chooses a 𝑣 ∈ mveo
or equivalently a minimal query plan, for each w ∈𝑊 , s.t. the resulting
factorization is of minimal size. The size of the ILP is polynomial in
𝑛 = |𝐷| and exponential in the query size.

ILP Decision Variables. The ILP is based on two sets of binary variables:
Query Plan Variables (QPV) 𝑞 use a one-hot encoding for the choice of a
minimal VEO (or equivalently minimal query plan) for each witness, and
Prefix Variables (PV) 𝑝 encode sub-factorizations that are a consequence
of that choice. Intuitively, shared prefixes encode shared computation
through factorization.

(1) Query Plan Variables (QPV): For each witness w ∈𝑊 and each minimal
VEO 𝑣 ∈ mveo(𝑄) we define a binary variable 𝑞[𝑣⟨w⟩], which is set to 1 iff
VEO 𝑣 is chosen for witness w.‡

(2) Prefix Variables (PV): All witnesses must be linked to a set of prefix
variables, by creating instances of VEO prefixes that are in a query-specific
set called the Prefix Variable Format (PVF). This set PVF is composed of
all table prefixes of all minimal VEOs 𝑣 ∈ mveo(𝑄). Notice that prefix
variables can be shared by multiple witnesses, which captures the idea
of joint factorization. Additionally, we define a weight (or cost§) 𝑐(𝑣𝑅)
for each table prefix 𝑣𝑅 ∈ PVF; this weight is equal to the number of
tables that have the same table prefix for a given VEO. From that PVF set,
then binary prefix variables 𝑝[𝑣𝑅⟨w⟩] are defined for each table prefix
𝑣𝑅 ∈ PVF and w ∈𝑊 .

ILP Objective. The ILP should minimize the length of factorization len,
which can be calculated by counting the number of times each tuple is
written. If a tuple is a part of multiple witnesses, it may be repeated in
the factorization. However, if the tuple has the same table prefix instance
across different witnesses (whether as part of the same VEO or not), then
those occurrences are factorized together and the tuple is written just
once in the factorization. Thus, len is the weighted sum of all selected
table prefix instances. The weight accounts for tuples of different tables
that have the same table prefix under the same VEO. Since 𝑝[𝑣𝑅⟨w⟩] = 0
for unselected table prefixes, we can calculate len as:

len =
∑

𝑣𝑅⟨w⟩∈PV
𝑐(𝑣𝑅) · 𝑝[𝑣𝑅⟨w⟩] (7.1)

min
∑

𝑣𝑅⟨w⟩∈PV
𝑐(𝑣𝑅) · 𝑝[𝑣𝑅⟨w⟩]

s.t.
∑

𝑣∈mveo(𝑄)
𝑞[𝑣⟨w⟩] ≥ 1, ∀w ∈𝑊

𝑝[𝑣𝑅⟨w⟩] ≥ ∑
𝑣𝑅⟨w⟩ prefix of 𝑣⟨w⟩ 𝑞[𝑣⟨w⟩], ∀𝑝[𝑣𝑅⟨w⟩] ∈ PV

𝑝[𝑣𝑅⟨w⟩] ∈ {0, 1}, ∀𝑝[𝑣𝑅⟨w⟩] ∈ PV
𝑞[𝑣⟨w⟩] ∈ {0, 1}, ∀𝑞[𝑣⟨w⟩] ∈ QPV

(7.2)

Figure 7.9: ILP Formulation for
minFACT

‡ Notice that we use indexing in brackets 𝑞[𝑣⟨w⟩] instead of the more common subscript
notation 𝑞𝑣⟨w⟩ since each 𝑣⟨w⟩ can depict a tree. Our bracket notation is more convenient.

§ We write 𝑐 for weight (or cost) to avoid confusion with witnesses w.
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𝑦

𝑧 𝑢

𝑥
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(a) 𝑣1 = 𝑦← (𝑥, 𝑧←𝑢)

𝑧

𝑦 𝑥

𝑢

RS

T

11

0

1

(b) 𝑣2 = 𝑧← (𝑢, 𝑦←𝑥)
Figure 7.10: Example 7.5.1: mveo for
3-chain query 𝑄∞3 .

ILP Constraints. A valid factorization of 𝑊 must satisfy three types of
constraints:

(1) Query Plan Constraints: For every witness w ∈𝑊 , some 𝑣 ∈ mveo(𝑄)
must be selected.¶ For example, for w = (𝑥1 , 𝑦1) under 𝑄★

2 , we enforce
that: 𝑞[𝑥1← 𝑦1] + 𝑞[𝑦1←𝑥1] ≥ 1.

(2) Prefix Constraints: For any given table prefix 𝑝, it must be selected
if any one of the VEOs that has it as a prefix is selected. Since (under
a minimization optimization) only one VEO is chosen per witness, we
can say that the value of 𝑝[𝑣𝑅⟨w⟩] must be at least as much as the
sum of all query plan variables 𝑞[𝑣⟨w⟩] such that 𝑣𝑅⟨w⟩ is a prefix of
𝑣⟨w⟩. For example, we enforce that 𝑝[𝑥1] must have value at least as
much as 𝑞[𝑥1 ← 𝑦1 ← 𝑧1] + 𝑞[𝑥1 ← 𝑧1 ← 𝑦1]. But we cannot enforce
𝑝[𝑥1] ≥ 𝑞[𝑥1 ← 𝑦1 ← 𝑧1] + 𝑞[𝑥1 ← 𝑧1 ← 𝑦2] (as both VEOs do not belong
to the same witness.)

(3) Boolean Integer Constraints: Since a VEO is either selected or unselected,
we set all variables in PV and QPV to 0 or 1.

Theorem 7.5.1 (ILP[minFACT] correctness) The objective of ILP[minFACT]
for a query 𝑄 and database D is always equal to minFACT(𝑄, 𝐷).

Corollary 7.5.2 (FACT is in NP) FACT, the decision variant of minFACT, is
in NP.

Size of ILP. For query 𝑄 with 𝑚 relations and |mveo(𝑄)|= 𝑘, and a set of
𝑛 witnesses under 𝑄: the resulting ILP (without any optimizations) has
𝑛(1 + 𝑘𝑚) constraints. Thus the size of the ILP is linear in the number of
witnesses.

7.5.1 Example minFACT ILPs

Example 7.5.1 (ILP formulation for 3-chain query) Consider the
3-Chain query 𝑄∞3 :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑢) with a set of 2 wit-
nesses 𝑊 = {(𝑥1 , 𝑦1 , 𝑧1 , 𝑢1), (𝑥1 , 𝑦1 , 𝑧1 , 𝑢2)} and provenance in DNF of
𝑟11𝑠11𝑡11 + 𝑟11𝑠11𝑡12. Using the dissociation based algorithm [66]

[66]: Gatterbauer and Suciu (VLDBJ, 2017),
‘Dissociation and propagation for approx-
imate lifted inference with standard re-
lational database management systems’.
doi:10.1007/s00778-016-0434-5

, we
see that this query has 2 minimal query plans corresponding to the
two VEOs shown in Figure 7.10. We use these VEOs to first build the set
QPV (Query Plan Variables) and enforce a query plan constraint for

¶ We wish to have exactly one query plan or minimal VEO per witness, but in a minimization
problem, it suffices to say that at least one 𝑣 ∈ mveo is selected - if multiple are selected,
either one of them arbitrarily still fulfills all constraints.
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each of the 2 witnesses:

𝑞[𝑦1← (𝑥1 , 𝑧1←𝑢1)] + 𝑞[𝑧1← (𝑢1 , 𝑦1←𝑥1)] ≥ 1
𝑞[𝑦1← (𝑥1 , 𝑧1←𝑢2)] + 𝑞[𝑧1← (𝑢2 , 𝑦1←𝑥1)] ≥ 1

Then, we calculate the elements of the set PVF (Prefix Variable Format)
as well as their weights. For the two VEOs from Figure 7.10, and the
three tables 𝑅, 𝑆, 𝑇, we get 6 distinct table prefixes:

VEO 𝑣1 VEO 𝑣2

𝑣𝑅1 = 𝑦←𝑥 𝑣𝑅2 = 𝑧← 𝑦←𝑥

𝑣𝑆1 = 𝑦← 𝑧 𝑣𝑆2 = 𝑧← 𝑦

𝑣𝑇1 = 𝑦← 𝑧←𝑢 𝑣𝑇2 = 𝑧←𝑢

We add all these table-prefixes to the PVF. Since no table prefix is
repeated, they all are assigned weight 𝑐 = 1. Notice that prefixes 𝑦 for
𝑣1 and 𝑧 for 𝑣2 are no table prefixes (and thus have weight 𝑐 = 0 and
do not participate in the objective).

From the set of table prefixes PVF, we then create the set of prefix
variables PV, one for each table prefix and each witness w ∈𝑊 , and
define their prefix constraints. The prefix constraints necessary for
witness w1 = (𝑥1 , 𝑦1 , 𝑧1 , 𝑢1) are as follows:

𝑝[𝑦1←𝑥1] ≥ 𝑞[𝑦1← (𝑥1 , 𝑧1←𝑢1)] 𝑝[𝑦1← 𝑧1] ≥ 𝑞[𝑦1← (𝑥1 , 𝑧1←𝑢1)]
𝑝[𝑦1← 𝑧1 ← 𝑢1] ≥ 𝑞[𝑦1← (𝑥1 , 𝑧1←𝑢1)] 𝑝[𝑧1← 𝑦1 ← 𝑥1] ≥ 𝑞[𝑧1← (𝑢1 , 𝑦1←𝑥1)]

𝑝[𝑧1← 𝑦1] ≥ 𝑞[𝑧1← (𝑢1 , 𝑦1←𝑥1)] 𝑝[𝑧1←𝑢1] ≥ 𝑞[𝑧1← (𝑢1 , 𝑦1←𝑥1)]

The prefix constraints for witness w2 = (𝑥1 , 𝑦1 , 𝑧1 , 𝑢2) are:

𝑝[𝑦1←𝑥1] ≥ 𝑞[𝑦1← (𝑥1 , 𝑧1←𝑢2)] 𝑝[𝑦1← 𝑧1] ≥ 𝑞[𝑦1← (𝑥1 , 𝑧1←𝑢2)]
𝑝[𝑦1← 𝑧1 ← 𝑢2] ≥ 𝑞[𝑦1← (𝑥1 , 𝑧1←𝑢2)] 𝑝[𝑧1← 𝑦1 ← 𝑥1] ≥ 𝑞[𝑧1← (𝑢2 , 𝑦1←𝑥1)]

𝑝[𝑧1← 𝑦1] ≥ 𝑞[𝑧1← (𝑢2 , 𝑦1←𝑥1)] 𝑝[𝑧1←𝑢2] ≥ 𝑞[𝑧1← (𝑢2 , 𝑦1←𝑥1)]

Notice that we have 12 constraints (one for each pair of witness and
table prefix), yet only 8 distinct prefix variables due to common prefixes
across the two witnesses (which intuitively enables shorter factoriza-
tions). For this query, for every witness, there are 6 prefix variables in
the objective (some of which are used by multiple witnesses), 1 Query
Plan constraint, and 6 Prefix constraints.

Finally, we define the objective to minimize the weighted sum of all 8
prefix variables in 𝑃𝑉 (here all weights are 1):

len = 𝑝(𝑦1 ← 𝑥1) + 𝑝[𝑦1 ← 𝑧1] + 𝑝[𝑦1 ← 𝑧1 ← 𝑢1] + 𝑝[𝑧1 ← 𝑦1 ← 𝑥1] + 𝑝[𝑧1 ← 𝑦1]+
𝑝[𝑧1 ← 𝑢1] + 𝑝[𝑦1 ← 𝑧1 ← 𝑢2] + 𝑝[𝑧1 ← 𝑢2]

In our given database instance, len has an optimal value of 4 when the
prefixes 𝑝[𝑧1 ← 𝑦1 ← 𝑥1], 𝑝[𝑧1 ← 𝑦1], 𝑝[𝑧1 ← 𝑢1] and 𝑝[𝑧1 ← 𝑢2] are
set to 1. This corresponds to the minimal factorization 𝑟11𝑠11(𝑡11 + 𝑡12).

This next example highlights some optimizations to the ILP.

Example 7.5.2 (ILP formulation for 3-Star query) Consider the 3-Star
query 𝑄★

3 :−𝑅(𝑥), 𝑆(𝑦), 𝑇(𝑧),𝑊(𝑥, 𝑦, 𝑧). This query has 6 minimal
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query plans corresponding to the 6 VEOs shown in Figure 7.11. We use
these VEOs to build the set QPV.

Note that since all query plans are linear (they all form paths), they
can alternatively be specified by the first two variables in the VEO (the
last one is implied). We use this shorter notation as it also simplifies
constraints later. Hence, the query plan constraint for an example
witness w1 = (𝑥1 , 𝑦1 , 𝑧1) would be:

𝑞[𝑥1← 𝑦1] + 𝑞[𝑥1← 𝑧1] + 𝑞[𝑦1←𝑥1]
+ 𝑞[𝑦1← 𝑧1] + 𝑞[𝑧1←𝑥1] + 𝑞[𝑧1← 𝑦1] ≥ 1

Then, we calculate the table-prefixes needed to build set PVF, illustrated
here for all 6 VEOs:

VEO 𝑣1 VEO 𝑣2 VEO 𝑣3

𝑣𝑅1 = 𝑥 𝑣𝑅2 = 𝑥 𝑣𝑅3 = 𝑥← 𝑦

𝑣𝑆1 = 𝑥← 𝑦 𝑣𝑆2 = 𝑥← 𝑧← 𝑦 𝑣𝑆3 = 𝑦

𝑣𝑇1 = 𝑥← 𝑦← 𝑧 𝑣𝑇2 = 𝑥← 𝑧 𝑣𝑇3 = 𝑦←𝑥← 𝑧

𝑣𝑊1 = 𝑥← 𝑦← 𝑧 𝑣𝑊2 = 𝑥← 𝑧← 𝑦 𝑣𝑊3 = 𝑦←𝑥← 𝑧

VEO 𝑣4 VEO 𝑣5 VEO 𝑣6

𝑣𝑅4 = 𝑦← 𝑧←𝑥 𝑣𝑅5 = 𝑧←𝑥 𝑣𝑅6 = 𝑧← 𝑦←𝑥

𝑣𝑆4 = 𝑦 𝑣𝑆5 = 𝑧←𝑥← 𝑦 𝑣𝑆6 = 𝑧← 𝑦

𝑣𝑇4 = 𝑦← 𝑧 𝑣𝑇5 = 𝑧 𝑣𝑇6 = 𝑧

𝑣𝑊4 = 𝑦← 𝑧←𝑥 𝑣𝑊5 = 𝑧←𝑥← 𝑦 𝑣𝑊6 = 𝑧← 𝑦←𝑥

Notice that we need to count the paths of length 3 twice, once for the
table 𝑊 , and once for the last of the unary tables in the respective VEO.
In total, we have 15 = 3 + 6 + 6 unique prefixes (3 of length 1, 6 of length
2, 6 of length 3).

Let 𝑇𝑖 be the set of all table prefix instances of length 𝑖. The objective
can be written as

len = min
∑
𝜋∈𝑇1

𝑝(𝜋) +
∑
𝜋∈𝑇2

𝑝(𝜋) + 2
∑
𝜋∈𝑇3

𝑝(𝜋)

We can simplify this objective by observing that the prefixes of length
3 are unique to each witness (this is so as those prefixes contain all
variables, and every witness is unique under set semantics). Thus,
the sum of all total orders of length 3 from the set {𝑥, 𝑦, 𝑧} over all 𝑛
witnesses is 𝑛 (one for each witness). We can thus replace all projection
variables with table-prefix of length 3 with a constant and simplify the
objective to

len = min
∑
𝜋∈𝑇1

𝑝(𝜋) +
∑
𝜋∈𝑇2

𝑝(𝜋) + 2𝑛

The projection constraints for the witness 𝑤1 = (𝑥1 , 𝑦1 , 𝑧1) are:

𝑝[𝑥1] ≥ 𝑞[𝑥1← 𝑦1] + 𝑞[𝑥1← 𝑧1]
𝑝[𝑦1] ≥ 𝑞[𝑦1←𝑥1] + 𝑞[𝑦1← 𝑧1]
𝑝[𝑧1] ≥ 𝑞[𝑧1←𝑥1] + 𝑞[𝑧1← 𝑦1]
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𝑥 𝑦 𝑧
R S T

W
1 1 2

(a) 𝑣1 = 𝑥← 𝑦← 𝑧

𝑥 𝑧 𝑦
R ST

W
1 1 2

(b) 𝑣2 = 𝑥← 𝑧← 𝑦

𝑦 𝑥 𝑧
RS T

W
1 1 2

(c) 𝑣3 = 𝑦←𝑥← 𝑧

𝑦 𝑧 𝑥
RS T

W
1 1 2

(d) 𝑣4 = 𝑦← 𝑧←𝑥

𝑧 𝑥 𝑦
R ST

W
1 21

(e) 𝑣5 = 𝑧←𝑥← 𝑦

𝑧 𝑦 𝑥
RST

W
211

(f) 𝑣6 = 𝑧← 𝑦←𝑥

Figure 7.11: Example 7.5.2: mveo for
3-star query 𝑄★

3 .

[126]: (), OEIS A000169: The On-Line Encyclope-
dia of Integer Sequences.

In this query, for every witness, there must be 9 corresponding variables
in the objective, 1 Query Plan constraint, and 3 Projection constraints.

7.5.2 Value of structural knowledge

A key underlying quest in complexity theory and knowledge compilation
is determining the value of knowledge of the underlying structure by which
a problem decomposes. Consider an arbitrary 𝑚-partite positive DNF
and the problem of finding its minimal factorization. What is the value
of knowing the query that produced that provenance polynomial?

If we don’t have additional information, then each clause (or witness)
could be factored in any of the possible factorization orders. The number
of those is equal to the number of labeled rooted trees with 𝑚 vertices,
which is 𝑚𝑚−1 [126]: A000169: 1, 2, 9, 64, 625, 7776, 117649, . . . However,
if we know that the DNF is the provenance of a query 𝑄 with 𝑘 variables
over a database D, then we only need to consider the query-specific
number |mveo(𝑄)| of minimal VEOs.

For example, for the 𝑘-star query 𝑄∗
𝑘
, which has the highest number of

minimal VEOs (given fixed 𝑘), the number of minimal VEOs is 𝑘!. Contrast
this with knowing the query and just having a 𝑘 + 1-partite positive
DNF (its provenance has 𝑘 + 1 partitions). The number partitions alone
would imply (𝑘 + 1)𝑘 possible factorizations for each witness. To illustrate
the difference, we contrast the numbers for increasing 𝑘 = 2, 3, . . .:
{(𝑘 : 𝑘! |(𝑘 + 1)𝑘)} = {(2 : 2|9), (3 : 6|64), (4 : 24|625), (5 : 120|7776), (6 :
720|117649), . . .}.

7.6 PTIME Algorithms

We provide two PTIME algorithms: (1) a Max-Flow Min-Cut (MFMC)
based approach and (2) an LP relaxation from which we obtain a rounding
algorithm that gives a guaranteed |mveo|-approximation for all instances.
Interestingly, Section 7.8 will later show that both algorithms (while
generally just approximations) give exact answers for all currently known
PTIME cases of minFACT.

7.6.1 MFMC-based Algorithm for minFACT

Given witnesses 𝑊 and mveo(𝑄), we describe the construction of a
factorization flow graph 𝐹 s.t. any minimal cut of 𝐹 corresponds to a
factorization of 𝑊 . A minimal cut of a flow graph is the smallest set
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𝟏 Figure 7.12: A flow graph 𝐹 for
minFACT. The goal is to disconnect
the source and the target nodes with
minimum cuts. White 𝑞 and 𝑝 nodes
can be cut and have capacities (in or-
ange) equal to the weights of the cor-
responding variables in the ILP ob-
jective. Edges and connector nodes
(in blue) have infinite capacity and
cannot be cut.

of nodes whose removal disconnects the source (⊥) and target (⊤)
nodes [160]. Since minimal cuts of flow graphs can be found in PTIME [42],
we obtain is a PTIME approximation for minFACT.

Construction of a factorization flow graph

We construct a flow graph 𝐹 s.t. there exists a valid factorization of 𝑊 of
length≤ 𝑐 if the graph has a cut of size 𝑐. 𝐹 is constructed by transforming
decision variables in the ILP into "cut" nodes in the flow graph that may
be cut at a penalty equal to their weight. Any valid cut of the graph selects
nodes that fulfill all constraints of the ILP. We prove this by describing
the construction of 𝐹 (Figure 7.12).

(1) mveo order: We use Ω to describe a total order on mveo (i.e. a total order
on the set of minimal query plans). In Figure 7.12, mveo is ordered by
Ω = (𝑣1 , 𝑣2 , . . . , 𝑣𝑘) where 𝑘 = |mveo|.
(2) QPV: For each witness w, connect the query plan variables (QPV) as
defined by Ω. Since all paths from source to target must be disconnected,
at least one mveomust be cut from this path. Thus, 𝐹 enforces the Query
Plan Constraints.

(3) PV: For each witness w and prefix variable 𝑝, identify the first and
last query variable for which 𝑝 is a prefix and connect the corresponding
prefix variable node to connector nodes before and after these query
variables. For example, in Figure 7.12, for w2, 𝑝1 starts at 𝑞[𝑣1⟨w2⟩] and
ends at 𝑞[𝑣2⟨w2⟩] implying that 𝑝1 is a prefix for 𝑞[𝑣1⟨w2⟩] and 𝑞[𝑣2⟨w2⟩],
but no query plan after that. Now if either of 𝑞[𝑣1⟨w2⟩] or 𝑞[𝑣2⟨w2⟩] are
in the minimal cut, the graph is not disconnected until 𝑝1 is added to the
cut as well. These nodes guarantee that 𝐹 enforces Prefix Constraints.

(4) Weights: Assign each 𝑞 and 𝑝 node in 𝐹 the same weight as in the ILP
objective. Recall that this weight is the number of tables with the same
table prefix under the same VEO and that it helps calculate the correct
factorization length.

Thus, a min-cut of 𝐹 contains at least one plan for each witness, along
with all the prefixes that are necessary for the plan. This guarantees a
valid (although not necessarily minimal) factorization.‖

‖ If a min-cut contains more than one plan for a witness, then one can pick either of the
plans arbitrarily to obtain a valid factorization.
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(d) 𝑣4

y z
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Figure 7.13: Example 7.6.2: 4 mveo for 𝑄◦6WE that prevent an RP-ordering

When is the MFMC-based algorithm optimal?

In the previous subsection we saw that a min-cut of 𝐹 always represents
a valid factorization. However, the converse is not true: there can be
factorizations that do not correspond to a cut. The reason is that spurious
constraints might arise by the interaction of paths; those additional
constraints no longer permit the factorization. There are two types of
spurious paths:

(1) Spurious Prefix Constraints. Spurious prefix constraints arise when a
prefix node 𝑝 is in parallel with a query node 𝑞 of which it is not a prefix.
This happens when a 𝑞 is not prefixed by 𝑝, but other query plans before
and after are. To avoid this, the ordering Ω must be a Running-Prefixes
(RP) ordering.‗‗

Definition 7.6.1 (Running-Prefixes (RP) ordering) An ordering Ω =
(𝑞1 , 𝑞2 , . . . , 𝑞𝑘) is an RP Ordering and satisfies the RP-Property iff for any 𝑝
that is a prefix for both 𝑞𝑖 and 𝑞 𝑗 (𝑖 < 𝑗), 𝑝 is a prefix for all 𝑞𝑘 with 𝑖 ≤ 𝑘 ≤ 𝑗.

Example 7.6.1 (RP ordering) Assume mveo= {(𝑥← 𝑦← 𝑧), (𝑥← 𝑧←
𝑦), (𝑧← 𝑦← 𝑥)}. Then Ω1 = ((𝑥← 𝑦← 𝑧), (𝑧← 𝑦← 𝑥), (𝑥← 𝑧← 𝑦)) is
not an RP ordering since the 1st and 3rd VEO share prefix 𝑥, however
the 2nd starts with 𝑧. In contrast, Ω2 = ((𝑥← 𝑦← 𝑧), (𝑥← 𝑧← 𝑦), (𝑧←
𝑦←𝑥)) is an RP ordering.

It turns out that for some queries RP-Orderings are impossible (such
as 𝑄◦6WE, see Figure 7.13). However, we are able to adapt our algorithm
for such queries with a simple extension called nested orderings. We first
define two query plans as nestable if each query plan can be “split” into
paths from root to leaf such that they have an equal number of resulting
paths, and that the resulting paths can be mapped to each other satisfying
the property that corresponding paths use the same set of query variables.
Nested orderings then are partial orders of query plans such that the pair
of query plans may be uncomparable iff they are nestable. Finally, we
define Nested RP-orderings as those such that all paths in the partial
nested order satisfy the RP property. Intuitively, nested orderings add
parallel paths for a single witness to model independent decisions. We
can now prove that there always is an ordering that avoids spurious
prefix constraints.

‗‗ Notice that this concept is reminiscent of the running intersection property [13, 15] and the
consecutive ones property [29].
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Figure 7.14: Example 7.6.2 incor-
rect: Part of factorization flow graph
showing 4 min VEOs in Non-RP or-
dering. Notice that prefixes 𝑥𝑢𝑤

and 𝑥𝑢𝑤𝑣 span query variables for
which they are not prefixes.
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Figure 7.15: Example 7.6.2 corrected:
Nested RP-ordering that treats each
subtree {𝑦, 𝑧} and {𝑣, 𝑤} under
{𝑥, 𝑢} as independent subproblem.

Example 7.6.2 (6-cycle) Consider the 6-cycle query with endpoints
shown in Figure 7.16 and the subset {𝑣1 , 𝑣2 , 𝑣3 , 𝑣4} of mveo of this
query shown in Figure 7.13. Notice that there is no ordering for these 4
VEOs to allow the running prefix property. For example, if the prefixes
of 𝑦,𝑧, and 𝑣 satisfy the property, then we cannot have the prefix of
𝑤 adjacent as well in a linear ordering. Figure 7.14 shows a partial
factorization flow graph focused on these four VEOs in an arbitrary
ordering. Notice that the nodes such as 𝑥←𝑢←𝑤 may be selected
even if their corresponding plans are not used.

Our modification to generate an RP-Ordering relies on the observation
that the two children of node 𝑎 in the VEO may be independently
chosen. The left sub-child may be 𝑦 ← 𝑧 or 𝑧 ← 𝑦 and the right
sub-child can independently be 𝑣← 𝑤 or 𝑤← 𝑣. We encode these
independent decisions as parallel paths and write the nested ordering
as Ω = [𝑥← 𝑢← ((𝑧← 𝑦, 𝑦← 𝑧) × (𝑣← 𝑤, 𝑤← 𝑣))]. In the new
flow graph Figure 7.15, each independent decision is a parallel path
in the flow graph. Thus, the choice of 𝑥𝑢𝑦𝑧 vs. 𝑥𝑢𝑧𝑦 is independent
of choosing 𝑥𝑢𝑣𝑤 vs. 𝑥𝑢𝑤𝑣. More formally, {𝑣1 , 𝑣2 , 𝑣3 , 𝑣4} are all
nestable with each other. Thus, we can build a nested ordering where
any pair of these are uncomparable. Figure 7.15 shows the factorization
flow graph for Ω.

𝑥

𝑦 𝑧

𝑢

𝑣𝑤

Figure 7.16: Example 7.6.2: 6-cycle
query with endpoints𝑄◦6WE :−𝐴(𝑥),
𝑅(𝑥, 𝑦), 𝐵(𝑦), 𝑆(𝑦, 𝑧), 𝐶(𝑧), 𝑇(𝑧, 𝑢),
𝐷(𝑢), 𝑈(𝑢, 𝑣), 𝐸(𝑣), 𝑉(𝑣, 𝑤), 𝐹(𝑤),
𝑊(𝑤, 𝑥).
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Theorem 7.6.1 (Running Prefixes (RP) Property) For any query, there is a
simple or nested ordering Ω that satisfies the RP Property.

Proof Theorem 7.6.1. We prove the theorem by outlining a method of
construction of Ω and showing that this Ω is guaranteed to satisfy the
RP property.

To construct an RP-Ordering Ω we first group the mveo by their root
variable 𝑟. Since the root variables are present in any prefix we know
that no two VEOs in different groups can share prefixes. Thus arranging
the roots in a pre-determined order e.g. a lexicographical order can lead
to no violation of the Running Prefixes property. Within a group of
VEOs with root 𝑟, we must again decide the ordering. If 𝑟 disconnects
the query incidence matrix, it will have as many children in the VEOs
as the number of disconnected components. Since 𝑟 is a min-cut of the
query matrix, there will be no node that is shared by its children and the
ordering of each component can be decided independently. With these
new groups of independent prefixes, we again look to order them using
the predetermined order, splitting into nested paths when necessary.
Hence, we obtain a nested RP-Ordering Ω for any 𝑄.

(2) Spurious Query Constraints. Query Plan constraints are enforced
by paths from source to target such that at least one node from each
path must be chosen for a valid factorization. Due to sharing of prefix
variables, these paths can interact and can lead to additional spurious
paths that place additional spurious constraints on the query nodes. The
existence of spurious query constraints does not necessarily imply that
the algorithm is not optimal. In fact, Section 7.8 shows that 𝑄△

𝐴
and 𝑄∞4

have spurious query paths, yet the min-cut is guaranteed to correspond to the
minimal factorization. However, if the presence of spurious query paths
prevents any of the minimal factorizations to be a min-cut for 𝐹, then
we say that the factorization flow graph 𝐹 has “leakage” (Example 7.6.3).
Since all paths along one witness are cut by construction, a leakage path
must contain nodes from at least two different witnesses.

Definition 7.6.2 (Leakage) Leakage exists in a factorization flow graph
if no minimal factorization is a valid cut of the graph. A leakage path is a
path from source to target such that a valid minimal factorization is possible
without using any node on the path.

A Flow Graph With Leakage

The factorization flow graphs are an approximation and can have leakage
i.e. if no minimal factorization forms a min-cut of the flow graph.

Example 7.6.3 (Leakage in 𝑄△ flow graph) Consider a set of 4 wit-
nesses 𝑊 = {𝑟0𝑠0𝑡0 , 𝑟1𝑠1𝑡0 , 𝑟2𝑠1𝑡1 , 𝑟2𝑠2𝑡2} for 𝑄△. It has 3 minimal
VEOs: mveo(𝑄△) = {𝑣1 = 𝑥𝑦 ← 𝑧, 𝑣2 = 𝑦𝑧 ← 𝑥, 𝑣3 = 𝑧𝑥 ← 𝑦}. No-
tice that any permutation of the mveo is RP. We arrange the query
plan variables in order Ω = [𝑣1 , 𝑣2 , 𝑣3] to construct Figure 7.17. The
min-cut of the graph is 11. However, the minimal factorization of 𝑊
𝑡0(𝑟0𝑠0 ∨ 𝑟1𝑠1) ∨ 𝑟2(𝑠1𝑡1 ∨ 𝑠2𝑡2) has length 10 (corresponding to the
nodes in blue). However, this factorization does not cut the graph
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Figure 7.17: Example 7.6.3: A flow
graph with leakage for the query
𝑄△.
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(e) Flow graph 𝐹.

Figure 7.18: Example 7.6.4:
Three mveo’s for triangle query
𝑄△ :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥) (a)-(c),
example database instance D (d),
and constructed flow graph for
mveo order Ω = [𝑣1 , 𝑣2 , 𝑣3] (e).
Notice that several variables may
appear in the same node of a mveo
(e.g., 𝑥 and 𝑦 in 𝑥𝑦 ← 𝑧).

because the graph encodes an additional spurious constraint (shown
as a red path) that enforces 𝑥0𝑦1 + 𝑦1𝑧0 + 𝑧0𝑥1 ≥ 1 which need not be
true.

Optimality of algorithm. Thus, a solution found by the MFMC-based
algorithm is guaranteed to be optimal if it has two properties:

1. The ordering Ω is a Running-Prefixes ordering or a nested Running-
Prefixes ordering (always possible).

2. There is no leakage in the flow graph (not always possible).

We use these properties in Section 7.7 and Section 7.8 to prove a number
of queries to be in PTIME. In fact, all currently known PTIME cases can be
solved exactly with the MFMC-based algorithm via a query-dependent
ordering of the mveos.

Example 7.6.4 (Flow graph construction for Triangle Query) Con-
sider the triangle query 𝑄△ :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥). The query has 3
minimal Query Plans corresponding to mveos shown in Figures 7.18a
to 7.18c. The provenance of 𝑄△ over the database shown in Figure 7.18d,
has 2 witnesses: 𝑊 = {𝑟00𝑠00𝑡00 , 𝑟01𝑠10𝑡00}. We build a flow graph to
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find a factorization. (1) We choose Ω = (𝑣1 , 𝑣2 , 𝑣3) as linear order for the
mveo. (2) For each witness, we connect their three query plan variables
𝑞[𝑣⟨w⟩] in this order serially from source to target. (3) In 𝑄△, each
mveo has a single prefix. We attach these variables in parallel to their
corresponding query variables. Notice that the prefix 𝑧0𝑥0 is shared
by both w1 and w2, and therefore is attached in parallel to both corre-
sponding query variables. (4) Finally, we add weights corresponding
to the number of tables having each prefix (see Figures 7.18a to 7.18c).

The resulting flow graph is shown in Figure 7.18e. The min-cut (high-
lighted in purple) consists of the nodes {𝑧0𝑥0← 𝑦0 , 𝑧0𝑥0 , 𝑧0𝑥0← 𝑦1}.
The corresponding factorization using the selected query plans is
𝑡00(𝑟00𝑠00 ∨ 𝑟01𝑠10). The weighted cut-value (5) is equal to the length of
the factorization. This factorization is minimal.

7.6.2 LP relaxation for minFACT and an LP
relaxation-based approximation

Linear Programming relaxation and rounding is a commonly-used
technique to find PTIME approximations for NPC problems [157]. The LP
relaxation for minFACT simply removes the integrality constraints on all
the problem variables. The LP relaxation may pick multiple query plans
for a given witness, each with fractional values. We present a rounding
scheme for minFACT and show it to be a |mveo|-factor approximation of
the optimal solution. The rounding algorithm simply picks the maximum
fractional value of query plan variables for each witness, breaking ties
arbitrarily. Finally, it counts only the prefix variables necessitated by the
chosen query plans.

Algorithm 3: LP rounding Algorithm

Input :List of witnesses 𝑊 under query 𝑄

Result: A factorization for the instance
/* Solving a LP: */

1 Construct the required an ILP for minFACT(𝑄) over witnesses 𝑊
2 Solve an LP relaxation of the problem by treating all decision variables as

continuous- i.e. allowing values [0,1] instead of {0,1}.
/* LP rounding: */

3 Set the value of all prefixes variables to 0.
4 for ∀ w ∈𝑊 do
5 𝑞𝑝 = the query plan variable of w with the highest value (break ties

arbitrarily)
6 Set value of 𝑞𝑝 = 1
7 Set all other query plan variables of w to 0
8 for ∀ query plan variables with value = 1 do
9 Set all their prefix variables to 1.

The bound provided by Algorithm 3 is the number of minimal query
plans, which may be exponential in query size. However, we argue that
this simple algorithm provides a useful bound. Let us compare it to the
trivial upper bound provided by the 𝐷𝑁𝐹 provenance. Consider an arbi-
trary 𝑘-chain with intermediates query :−𝑅1(𝑥1 , 𝑧1 , 𝑥2), 𝑅2(𝑥2 , 𝑧2 , 𝑥3),
. . . 𝑅𝑘(𝑥𝑘 , 𝑧𝑘 , 𝑥𝑘+1). Assume that all variables have the same domain 𝑑.
A read-once factorization would have 𝑘 ∗ 𝑑 literals, while the DNF could
have upto 𝑑𝑘 literals, with a worst-case approximation of 𝑑𝑘−1/𝑘. On the
other hand, the number of minimal query plans for a 𝑘-chain query are
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given by the Catalan numbers†† [66]. The approximation bound does not
depend on domain size and gets better in comparison to the 𝐷𝑁𝐹 as
domain size is increased. However, even for a small domain size of 10,
all chains up to at least k=30 have a better approximation bound with
the LP rounding.

Theorem 7.6.2 (Constant-factor approximation algorithm for minFACT)
The described rounding scheme gives a PTIME, |mveo|-factor approximation
for minFACT.

Proof Theorem 7.6.2. Since for each witness, a valid query plan as well
as all associated prefixes are chosen, we see that the approximation
algorithm returns a valid factorization.

We see that each query plan is multiplied by at most |mveo| the value it
had in the LP. A prefix is chosen only if the associated query plan has a
value of at least 1/|mveo| in the LP. Due to prefix constraints, any chosen
prefix too must have had to have a value of at least 1/|mveo| in the LP.
Thus all variables are multiplied by at most |mveo| and we can guarantee
the algorithm is an |mveo|-factor approximation.

When is the LP relaxation optimal?

Experimentally, we observed that the LP solution of many queries are
equal to the integral ILP solution. This is surprising since the ILP does
not satisfy any of the known requirements for tractable ILPs such as Total
Unimodularity, Balanced Matrices, or even Total Dual Integrality [144].
Interestingly, we next prove that the LP relaxation has the same objec-
tive value as the original ILP whenever the MFMC-based algorithm is
optimal.

Theorem 7.6.3 (Relationship between MFMC and LP based approaches
for minFACT) If all database instances can be solved exactly by the MFMC-
based algorithm for a given query 𝑄 (i.e. for each database instance there
exists an ordering that generates a leakage-free graph), then the LP relaxation
of minFACT always has the same objective as the original ILP.

Proof Theorem 7.6.3. We prove that, for such a query, the LP relaxation of
the ILP[minFACT] always gives the correct value. Concretely, we show that
the solution of the LP is the same as that of the MFMC-based algorithm
in any leakage-free ordering in Subsection 7.8.2.

First, we notice that the LP relaxation can only provide a lower bound for
minFACT, while we have the assurance that the MFMC-based algorithm
computes the exact minFACT value.

Next, we show that any solution obtained by the LP must satisfy the
MFMC algorithm in a leakage-free ordering. We know that the LP
solution must satisfy the query plan and prefix constraints, and thus
the corresponding paths are cut in the factorization flow graph. The
only remaining paths can only be leakage paths. However, since we
assumed this to be a leakage-free ordering, any additional leakage paths
are guaranteed not to increase the value of the min-cut. Thus, due to the
leakage-free nature, we need only check that the paths corresponding to

†† OEIS sequence A000108
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2: 𝑃4 patterns are alternatively defined
based on the 4 variables that form a path
like (𝑡 − 𝑟 − 𝑠 − 𝑢) in Figure 7.19. The sec-
ond property of “normality” [35, Sect. 10]
is always fulfilled by partitioned expres-
sions such as the provenance for sj-free
queries.

query plan paths and prefix paths are cut for a valid cut. In other words, a
solution that cuts all query plan and prefix paths must have an equivalent
solution that cuts all paths. Thus there is no path (or “constraint”) that is
not cut (i.e. not satisfied) by the LP solution, and the LP solution can be
represented as a cut of the graph.

Since we have shown that the LP solution is both no greater than and
no smaller than the min-cut solution, we have also shown that they are
identical (in the presence of a leakage-free ordering).

This result is important as it exposes cases for which the optimal objective
value of ILP[minFACT] is identical to the optimal objective value of a
simpler LP relaxation. This follows the same theme that we have seen in
the previous chapters, and here as well we can thus ILPs to solve tractable
cases in PTIME. We use this knowledge in Section 7.8 to show that ILP
solvers can solve all known PTIME cases in PTIME.

7.7 Recovering Read-Once instances

It is known that the read-once factorization of a read-once instance can
be found in PTIME with specialized algorithms [75, 141, 147]. We prove
that our more general MFMC based algorithm and LP relaxation are
always guaranteed to find read-once formulas when they exist, even though
they are not specifically designed to do so.

Details on read-once instances. A formula is read-once if it does not
contain any repeated variables. Read-once provenance formulas are
characterized by the absence of a 𝑃4 [35] co-occurrence pattern, which is
a pattern (𝑤1 − 𝑟 − 𝑤2 − 𝑠 − 𝑤3) where a witness 𝑤2 shares tuple 𝑟 with
𝑤1, and shares tuple 𝑠 with 𝑤3, however, 𝑤1 and 𝑤3 do not share 𝑟 nor 𝑠
(Figure 7.19).2 We prove that for any read-once formula for any query
the 𝐹 under any RP-Ordering does not have leakage.

Theorem 7.7.1 (minFACT of Read-Once Instances is tractable) minFACT
can be found in PTIME by

▶ the MFMC based algorithm, and
▶ the LP relaxation,

for any query and database instance that permits a read-once factorization.

Proof Theorem 7.7.1 (Part 1). Consider any RP or nested RP-Ordering Ω.
Notice that the factorization flow graph 𝐹 represents a database with a 𝑃4
if and only if we have three witnesses connected as shown in Figure 7.20.

Let us next assume that we have no 𝑃4, yet have leakage in 𝐹 involving
𝑤1 and 𝑤2. For this to be true, 𝑤1 and 𝑤2 must share a node 𝑡 that is not
chosen in the minimal factorization. It is usually not beneficial to choose
a node that belongs exclusively to 𝑤1 or 𝑤2 over a shared prefix 𝑡.

Thus, a shared prefix 𝑡 is not chosen only if there is some other prefix
that is shared between witnesses. Then there are exactly two possibilities:

𝑡 𝑟 𝑠 𝑢

w1 w2 w3

Figure 7.19: Section 7.7: 𝑃4 co-
occurrence pattern (𝑤1−𝑟−𝑤2−𝑠−𝑤3).
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Figure 7.20: Proof Theorem 7.7.1:
𝑃4(𝑤1 − 𝑝𝑟 −𝑤2 − 𝑝𝑠 −𝑤3) in factor-
ization flow graph.
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Figure 7.21: Proof Theorem 7.7.1: Im-
possibility of leakage in read-once
Instances (Case 2).

either this additional shared prefix is 1) shared with one of 𝑤1 or 𝑤2, or
2) shared with both 𝑤1 and 𝑤2. We explore both these cases:

1. One of the witnesses shares a different prefix with a different
witness 𝑤3. This scenario describes a 𝑃4, and hence is not possible
in a read-once instance.

2. The two witnesses 𝑤1 and 𝑤2 share a different node 𝑟 as well, and
that node is chosen for the minimal factorization. W.l.o.g, consider
that the chosen VEO 𝑣𝑟 lies to the right of shared 𝑣𝑡 node under the
ordering Ω (Figure 7.21). Any leakage path that passes through 𝑣𝑡
must pass through 𝑣𝑟 or a prefix of 𝑣𝑟 as well. Since these nodes
must be selected, the path cannot "leak".

Thus, we can never have a leakage path for any read-once instance
and the factorization flow graph returns the minimal factorization. In
more general terms, our flow graph also correctly identifies the minimal
factorization of all known tractable cases of exact probabilistic inference
(see Figure 7.34)

Proof Theorem 7.7.1 (Part 2). We show that the LP relaxation of theminFACT
ILP is always correct for read-once instances by showing that the solution
of the LP is the same as that of the MFMC-based algorithm (which
we proved is correct in Theorem 7.7.1). First, we see that any solution
obtained by the MFMC-based algorithm is a valid solution for the LP.
Since each path in the factorization flow graph is cut, any solution fulfills
all the query plan as well as prefix constraints, thus becoming a valid
solution for the LP and thus an upper bound for the optimal LP solution.

We can next see that the reverse is also true, that a valid LP solution also
is a cut for the factorization flow graph. We showed in Theorem 7.7.1
that a read-once instance has no leakage path, therefore each path of the
flow graph corresponds exactly to a constraint in the LP. Since the flow
graph imposes no additional constraints (“paths”), there is no constraint
(“path”) that is not satisfied (not cut) by the LP solution.

Hence, since valid LP solutions and valid min-cuts have an equivalence
for read-once instances, the Linear Program is guaranteed to find the
read-once factorization as well.
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7.8 Tractable Queries for minFACT

We now go beyond cases when PROB is in PTIME (i.e. read-once instances).
We first prove that minFACT(𝑄) is PTIME for the large class of queries with
2 minimal query plans. We then show examples of queries with 3 and 5
minimal query plans that are PTIME as well. All these newly recovered
PTIME cases, along with the previously known read-once cases, can be
solved exactly with both our PTIME algorithms from Section 7.6. Finally,
we hypothesize that minFACT is in PTIME for any linear query.

7.8.1 All queries with ≤2 minimal query plans

We prove that our MFMC-based algorithm has no leakage and thus
always finds the minimal factorization for queries with at most 2 minimal
VEOs (2-MQP) queries such as 𝑄★

2 and 𝑄∞3 . We also give an alternative
proof that shows that any ILP generated by such a query is guaranteed
to have a Totally Unimodular (TU) constraint matrix, and thus is PTIME
solvable [144].

Theorem 7.8.1 (minFACT of 2-MQP Queries is tractable) minFACT can be
found in PTIME for any query with max 2 minimal VEOs by

▶ the MFMC based algorithm, and
▶ the LP relaxation.

The theorem recovers the hierarchical queries which are equivalent to
1-MQP queries since they have one “safe plan” [39]. The PTIME nature
of 1-MQP queries also follows from Theorem 7.7.1, as all hierarchical
queries have read-once formulations.

We first prove the theorem for the MFMC based algorithm, and then for
the LP relaxation. The proof for the LP relaxation alternatively follows
from Theorem 7.6.3 given the first part of the proof.

Proof Theorem 7.8.1 (Part 1). Consider an arbitrary query 𝑄 with mveo =
{𝑣1 , 𝑣2}. There are two possible orderings of QPV. We can trivially see
they are both Running-Prefixes ordering since both query nodes either
share prefixes or do not. For there to be leakage in the flow graph, there
must be a path that connects two cut nodes that are not associated with
the same witness. Since the query has two minimal plans, every path
from source to target passes through at most two cut nodes. The two
nodes in the path are connected if and only if they are associated with a
common witness. Thus, no leakage is possible in this graph.

Since the flow graph for any query with mveo of size 2 always has an
RP ordering and can never have leakage, our algorithm is guaranteed to
always return the minimal factorization.

Proof Theorem 7.8.1 (Part 2). If a query has 2 min-VEOs, we first show that
if it has "equal roots" then the constraint matrix for the ILP generated by
this query is Totally Unimodular, and then show how this applies to any
query with 2 minimal plans.

Definition 7.8.1 (VEO roots) The root of a VEO is the set of variables in the
VEO that are projected away last in the corresponding query plan.
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Notice that the roots of two VEO are considered equal if and only if the
sets are identical.

Example 7.8.1 (VEO roots) The VEOs 𝑥← 𝑦← 𝑧 and 𝑥← 𝑧← 𝑦 have
equal root {𝑥}, while 𝑥𝑦← 𝑧 and 𝑥𝑧← 𝑦 do not.

Proposition 7.8.2 (Total Unimodularity of 2-MQP Queries) Let 𝑄 be a
query with precisely two minimal query plans {𝑣1 , 𝑣2} = mveo(𝑄) where 𝑣1
and 𝑣2 have unequal roots. Let 𝐶 be the constraint matrix of an ILP to find
the minimal factorization of any instance with 𝑄 constructed as defined in
(7.2). Then 𝐶 is a Totally Unimodular (TU) matrix.

Proof Proposition 7.8.2. The following Lemma 7.8.3 describes a set of
sufficient conditions for Total Unimodularity. We show that 𝐶𝑇 meets
all conditions. Since the transpose of a TU matrix is also TU, we hence
prove that 𝐶 is a TU matrix as well.

Lemma 7.8.3 (Sufficient conditions for Total Unimodularity [89]) Let 𝐴
be an 𝑚 by 𝑛 matrix whose rows can be partitioned into two disjoint sets 𝐵
and 𝐶, with the following properties:

1. every entry in A is 0, +1, or −1
2. every column of 𝐴 contains at most two non-zero entries;
3. if two non-zero entries in a column of A have the same sign, then the

row of one is in 𝐵, and the other in 𝐶
4. if two non-zero entries in a column of 𝐴 have opposite signs, then the

rows of both are in 𝐵, or both in 𝐶.

Then every minor determinant of𝐴 is 0, +1, or−1 i.e.𝐴 is a totally unimodular
matrix.

Each column in 𝐶𝑇 represents an ILP constraint and each row represents
a decision variable.

Condition 1: Recall the query plan constraint, projection constraint, and
integrity constraints. For any variable and any constraint, the coefficient
is 1 if the variable is on the LHS of the constraint, −1 if it is on the RHS,
and 0 if it does not participate in the constraint. The coefficient cannot be
any other value.

Condition 2: The query plan constraint enforces a relationship between
the variables of each min-VEO. In the case of queries with 2 plans, this
constraint involves 2 variables. The project constraints always enforce
a relationship between 2 variables- i.e. a query plan instance and a
variable-prefix instance, while the integrity constraint always involves a
single variable. Hence, there are never more than 2 non-zero coefficients
in a single constraint (and hence, a column of 𝐶𝑇).

Condition 3: The only type of constraint that has two coefficients of
the same non-zero value is the query plan constraint. Each constraint
involves a variable for VEO 𝑣1, and another for VEO 𝑣2. We assign all
variables corresponding to 𝑣1 to set 𝐵 and those corresponding to 𝑣2 to
set 𝐶 to satisfy this property.

Condition 4: The only type of constraint that has two coefficients of
the different non-zero values is the projection constraint. The constraint
involves a query variable and a projection variable. To satisfy condition 3
we have already assigned the query variable to either set 𝐵 or 𝐶. We now
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assign the projection variable to the same set to which the query variable
is assigned. A projection variable is constrained to a query variable if
and only if the projection variable has the same table-prefix instances as
the query variable. Since 𝑣1 and 𝑣2 have different roots, no projection
variable can be constrained to both the query variables. Hence, every
variable is assigned to only one of the two sets, and we fulfill all required
properties.

We can now use the proven-PTIME case for 2 VEOs with unequal roots to
also solve the case where the roots are equal. For query 𝑄 with min-VEOs
𝑣1 , 𝑣2 such that they have equal roots, we first check which tables have
the same table-prefix in both the VEOs. The tuples from these tables can
be minimally factorized only in a pre-ordained since they have a single
table-prefix. We separately pre-compute the length due to tuples from
these tables and remove these table-prefixes from the set 𝑃𝑉𝐹. After
this simplification, no table-prefix will be associated with both VEOs.
We can now satisfy Condition 4 by dividing projection variables like in
the unequal-root case. Recall that condition 4 was the only condition
where we required the unequal roots property. Thus, we prove that the
simplified matrix is TU, and we can obtain PTIME solutions for all queries
with 2 minimal query plans.

Corollary 7.8.4 (minFACT of Hierarchical Queries is tractable) minFACT
for Hierarchical Queries is in PTIME.

Corollary 7.8.5 (minFACTmore tractable than PQE) The classes of queries
for which minFACT is in PTIME is a strict super-class of those for which
probabilistic query evaluation is in PTIME (if 𝑃 ̸= 𝑁𝑃).

7.8.2 Two queries with ≥ 3 minimal query plans

Triangle-unary 𝑄△
𝐴

. We next prove that minFACT for a query that we call
“Triangle Unary” 𝑄△

𝐴
:−𝑈(𝑥), 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥) is in PTIME. This

is surprising since the query has 3 minimal VEOs mveo = {𝑥 ← 𝑦 ←
𝑧, 𝑥← 𝑧← 𝑦, 𝑦𝑧← 𝑥} and appears very similar to the triangle query
𝑄△ :−𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥) which also has 3 minimal VEOs mveo =
{𝑥𝑦← 𝑧, 𝑥𝑧← 𝑦, 𝑦𝑧← 𝑥}. Both queries are illustrated in Figure 7.30.
However 𝑄△ contains an active triad, which proves FACT(𝑄) to be NPC,
whereas 𝑄△

𝐴
does not have an active triad (neither 𝑅(𝑥, 𝑦) nor 𝑇(𝑧, 𝑥)

are independent due to the relation 𝑈(𝑥)). Furthermore, the constraint
matrix of the 𝑄△

𝐴
’s ILP is not guaranteed to be Totally Unimodular (TU), thus

our prior TU argument cannot be used anymore for it to be in PTIME.
Then we can use Theorem 7.6.3 to show that the LP relaxation is always
easy as well.

Theorem 7.8.6 (minFACT is tractable for 𝑄△
𝐴

) minFACT(𝑄△
𝐴
, 𝐷) can be

found in PTIME for any database D by

▶ the MFMC based algorithm, and
▶ the LP relaxation.

Theorem 7.8.6 (Part 1). Figure 7.22 shows the flow graph for a single
witness under order Ω = [𝑥 ← 𝑦 ← 𝑧, 𝑥 ← 𝑧 ← 𝑥, 𝑦𝑧 ← 𝑥]. However,
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⊤𝑥! ← 𝑦! ← 𝑧!⊥

					𝑧!𝑦!

				𝑧!𝑦! ← 𝑥!𝑥! ← 𝑧! ← 𝑦!

1 1

2 32

1

𝑥!

𝑥! ← 𝑦! 𝑥! ← 𝑧!

1

Figure 7.22: 𝑄△
𝐴

graph for a single
witness

⊤⊥

			𝑆

𝑆 ← U
1 1 1

1
			𝑈

			𝑈𝑅 𝑈𝑇

1

Figure 7.23: Simplified 𝑄△
𝐴

graph
for a single witness

this proof can be applied to any Ω of mveo(𝑄△
𝐴

) that satisfies the Running
Prefix property. Notice that no matter what mveo is chosen, a weight of at
least 2 is assigned to the full witness. We can preprocess the length due
to these nodes as 2 ∗ |𝑊 | and remove the nodes that correspond to the
full witness from the graph. In addition, we rename the mveo to names
based on the tables that distinguish them i.e. Ω can now be represented
as 𝑈𝑅,𝑈𝑇, 𝑆←𝑈 . The optimized graph for a single witness is shown
in Figure 7.23. Since all the weights are = 1, we leave out the weights in
subsequent figures.

We see from the graph that Ω is a Running-Prefixes Ordering, as the only
shared prefix 𝑈 , is shared between adjacent nodes.

We now show that 𝐹(𝑄, Ω) is leakage-free for any 𝑊 . A leakage path
must involve at least two witnesses since a path with nodes from one
witness only will be cut in any minimal factorization. Let w1 and w2 be
two witnesses whose nodes lie on the leakage path.

We divide the proof into 7 parts based on the relationship between w1
and w2. If w1 and w2 share:

1. No common variable values: There will be no common nodes between
the two witnesses, and leakage is not possible.

2. Only 𝑦 or 𝑧 values: There are still no common nodes between the
two witnesses (since there are no 𝑦 or 𝑧 nodes), and hence leakage
is not possible.

3. Only 𝑥 values: In this case (Figure 7.24), the 𝑈 node is shared. For
the shared node to be on the leakage path, it is not selected in a
minimal factorization - thus the witnesses may not choose any 𝑈𝑅
or 𝑈𝑇 plans -> thus the witnesses must choose the 𝑆←𝑈 plans.
Since all paths through 𝑈 pass through 𝑆 or 𝑆←𝑈 nodes, leakage
is not possible.

⊤⊥

𝑆!

𝑆! ← U!

𝑈!

𝑈!𝑅! 𝑈!𝑇!

𝑆" ← U!𝑈!𝑅" 𝑈!𝑇"

𝑆"
Figure 7.24: 𝑄△

𝐴
instance, with

shared 𝑥 (Case 3)
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⊤⊥

𝑆!

𝑆! ← U!

𝑈!

𝑈!𝑇!

𝑆" ← U!𝑈!𝑇"

𝑆"

𝑈!𝑅!

Figure 7.25: 𝑄△
𝐴

instance, with
shared 𝑥𝑦 (Case 4)

⊤⊥

𝑆!

𝑆! ← U!

𝑈!

𝑈!𝑅!

𝑆" ← U!𝑈!𝑅"

𝑆"

𝑈!𝑇!

Figure 7.26: 𝑄△
𝐴

instance, with
shared 𝑥𝑧 (Case 5)

4. 𝑥 and 𝑦 values: In this case (Figure 7.25), we can see that since
the shared node 𝑈𝑅 is at the side of the graph, we see the paths
passing through 𝑈𝑅 must pass through nodes corresponding with
the same witness only (either w1 or w2). Thus, no leakage is possible.

5. 𝑥 and 𝑧 values: In this case (Figure 7.26), a leakage is possible if and
only if one witness uses the𝑈𝑅 plan while the other uses the 𝑆←𝑈
plan. However, if an 𝑅 or 𝑇 tuple is repeated, then the minimal
factorization will never use the 𝑆←𝑈 plan, thus preventing the
only potential leakage path.

6. 𝑦 and 𝑧 values: This case (Figure 7.27), is similar to case 4 - since
the shared node 𝑆 is at the side of the graph, we see that all paths
through it pass through nodes corresponding with either only w1
or only w2, thus not allowing leakage.

7. 𝑥, 𝑦 and 𝑧 values: This case is not possible under set semantics.

We show an RP and leakage-free ordering for 𝑄△
𝐴

, hence proving that the
algorithm meets conditions for optimality described in Subsection 7.6.1.

Theorem 7.8.6 (Part 2). As we have shown in Theorem 7.6.3 that the LP
relaxation of minFACT is correct when it is solved by the MFMC-based
algorithm, this result follows given Theorem 7.8.6.

⊤⊥

𝑆! ← U!

𝑈!

𝑈!𝑅! 𝑈!𝑇!

𝑆! ← U!𝑈"𝑅" 𝑈"𝑇"

𝑆!

𝑈"
Figure 7.27: 𝑄△

𝐴
instance, with

shared 𝑦𝑧 (Case 6)
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⊤⊥

𝑧!𝑣!

𝑥!𝑧!𝑦! 𝑥!𝑦!𝑧! 𝑧"𝑦"𝑥!

𝑥!𝑢!

𝑧"𝑥!𝑦"

𝑦!𝑧!

𝑦!𝑥!

𝑥!𝑧! 𝑥!𝑦! 𝑧"𝑦" 𝑧"𝑥!

𝑦!𝑧!𝑣!

𝑦!𝑥!𝑢!

Figure 7.28: Flow graph with a sin-
gle witness of 𝑄∞4 under ordering
Ω.

𝑤!

𝑤"

𝑤#

Figure 7.29: Lemma 7.8.8: Showing
that if there is leakage in the graph,
there must be two witnesses that can
together form a leakage path.

4-chain 𝑄∞4 . This is arguably the most involved proof in the paper. 𝑄∞4
has |mveo|= 5. Yet in a similar proof to 𝑄△, we can show that the MFMC-
based algorithm and the LP are both optimal. This surprising result leads
to the conjecture that minFACT for longer chains, and all linear queries
are in PTIME.

Just like in the previous subsections, we show the PTIME complexity by
showing that the MFMC-based algorithm and LP relaxation are optimal.
The query has five minimal VEOs and in the first proof, we show that one
RP-ordering is leakage-free and optimal. We then use this factorization
flow graph to show that the Linear Program is always correct for any 𝑄∞4
instance as well.

Theorem 7.8.7 (minFACT is tractable for 𝑄∞4 ) minFACT(𝑄∞4 , 𝐷) can be
found in PTIME for any database D by

▶ the MFMC based algorithm, and
▶ the LP relaxation.

Proof Theorem 7.8.7 (Part 1). 𝑄∞4 has 5 minimal VEOs. Let us define an
ordering Ω = [𝑥← (𝑢, 𝑦← 𝑧← 𝑣), 𝑥← (𝑢, 𝑧← (𝑦, 𝑣)), 𝑦← (𝑥←𝑢, 𝑧←
𝑣), 𝑧← (𝑥← (𝑢, 𝑦), 𝑣), 𝑧← (𝑦←𝑥←𝑢, 𝑣)]

Notice that there are 2 plans each with 𝑥 or 𝑧 as a prefix, 1 plan with 𝑦 as
a prefix, and no plan with 𝑢 or 𝑣 as the prefix. Notice as well that in the
ordering Ω, the y plan is in the center and the 𝑥← 𝑧 and 𝑧←𝑥 plans are
at the sides. Figure 7.28 shows a single witness under this ordering.

We first check that this ordering has the Running Prefixes Property. This
is easily verified from the figure, no projection is parallel to a node it is
not a prefix of.

Next, we want to show that no flow graph under this ordering will have
leakage. For this, we first prove a lemma that if there is leakage in a flow
graph then there exists a leakage path comprised of nodes from just 2
witnesses.

Lemma 7.8.8 (Necessary condition for leakage) If there exists leakage
in a factorization flow graph F then there must exist two witnesses 𝑤1, 𝑤2
such that if we only consider a graph with cut nodes corresponding to these
witnesses then the plans they use any minimal factorization do not cut the
graph.
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Lemma 7.8.8. Assume that the lemma is false and any leakage path in 𝐹
must traverse through 3 witnesses. We know that for a leakage path to
exist, the witnesses must have some shared nodes. Let us the minimal
paths needed for such a set of witnesses 𝑤1, 𝑤2, 𝑤3 in Figure 7.29.
For a leakage path to exist, they must not choose any of the shared
computations in the path. W.l.o.g., assume 𝑤1 chooses a plan to the right
of the shared computation. Notice that if 𝑤2 chooses a plan in between
the two shared computations then there isn’t any more leakage. So the
only remaining case is if 𝑤2 chooses a plan to the left of the shared
computation with 𝑤3, in which case there is a leakage path between 𝑤2
and 𝑤3.

Now that we know that if there is leakage, there must be a leakage path
between two witnesses, let us assume there is an instance of 𝑄∞4 under
Ω where witnesses 𝑤1, 𝑤2 have a leakage path.

We do a case-wise analysis to show how this cannot exist, based on the
variables that 𝑤1 and 𝑤2 share.

1. They share no variables: No leakage is possible
2. They share u,x,y,z, or v variables: In this case to the two witnesses

share no nodes so no leakage is possible
3. They share ux or zv or xz variables: In this case, the two witnesses

share a variable - however, the variable is at the sides of the flow
graph and hence cannot create a leakage path (there cannot be a
crossover in the leakage path from 𝑤1 to 𝑤2

4. They share uxzv: In this case, they share multiple nodes, but again,
the shared nodes as on the sides.

5. They share xy (or yz): In this case, we can see there will be leakage
if the 𝑤1 chooses an 𝑥 plan and 𝑤2 chooses a different 𝑧. If the two
witnesses share only 𝑥𝑦 and no other variables, then 𝑥𝑦 must be a
part of at least 4 witnesses because of join dependencies (every u
that x is connected to must also connect to z and vice versa). In this
case, you would always choose a y plan since y acts as the root of
the Cartesian product.
However, if they share other variables along with xy, the argument
differs. The choosing of alternate plans could only happen if x and
z were both connected to different y as well. In this case, the xy
tuple would be repeated at least once, and since they use different
prefixes and share tuples, all of the tuples 𝑢𝑥, 𝑦𝑧, 𝑦𝑣 would be
repeated. Meanwhile, a factorization where they both choose the
same plan could only incur additional repeats on one of 𝑢𝑥 or 𝑧𝑣.

Notice that the above cases are exhaustive since they cover all possible
prefix node combinations that can be shared between two witnesses.
That is, they cover the possibility of two witnesses sharing nodes ux, xz
(equivalently zx, since the variables shared are the same), zv (in Case 3);
xy (equivalently yx), yz (equivalently zy), xzy (equivalently xyz), yzv,
yxu, zyx (equivalently zxy) (in Case 5). Notice that case 5 also includes
when any other additional variables are shared alongside xy or yz. Thus,
the above cases suffice to cover all possible prefix node sharing between
two witnesses. Note that two witnesses can’t share all 5 variables or all
prefix nodes, as that would make them the same witness.
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𝑥

𝑦 𝑧

𝑅

𝑆

𝑇

(a) Triangle Query 𝑞△

𝑥

𝑦 𝑧

𝑅

𝑆

𝑇

𝑈

(b) Triangle-Unary Query 𝑞△𝑈

Figure 7.30: We show that 𝑄△ is
hard in Section 7.9 because it con-
tains an “active triad.” Surprisingly,
for 𝑄△

𝐴
, a query that differs by

a single unary relation, the min-
imal factorization can always be
found in PTIME by either using our
MFMC based algorithm from Sub-
section 7.6.1 or our LP relaxation
from Subsection 7.6.2.

7.8.3 Conjecture for Linear Queries

A query is acyclic if it has a join tree, i.e. it permits a placement of its
atoms into a tree s.t. for any two atoms, the intersection of variables is
contained in the union of the variables of the atoms on the unique path
between them.‡‡ A query is linear if it permits a join path.§§ We have spent
a lot of time trying to prove the hardness of such queries without success.
Based on our intuition we hypothesize that all linear queries are in PTIME.
Our intuition is strengthened by the fact that over many experimental
evaluations, the LP relaxation of the ILP[minFACT] was always integral
and optimal, thus being able to solve the problem in PTIME.

Conjecture 7.8.9 (PTIME conjecture) If 𝑄 is a linear query, then
minFACT(𝑄, 𝐷) can be found in PTIME for any database D.

We think that additional insights from optimization theory are needed
to explain the integrality of the solution to the LP relaxation and to
thus prove this conjecture. We leave open the structural criterion that
separates the easy and hard cases.

7.9 Hard Queries for minFACT

In this section, we first prove that all queries that contain a structure
called “an active triad” (e.g. 𝑄★

3 and 𝑄△) are NPC. We then prove another
query to be NPC that does not contain an active triad, but a “co-deactivated
triad.” We thus show that while active triads are sufficient for FACT of a
query to be NPC, they are not necessary, and minFACT is a strictly harder
problem than RES.

Queries with Active triads. We repeat here the necessary definitions
introduced in the context of resilience under bag semantics (Chapter 4).
A triad is a set of three atoms, T= {𝑅1 , 𝑅2 , 𝑅3} s.t. for every pair 𝑖 ̸= 𝑗,
there is a path from 𝑅𝑖 to 𝑅 𝑗 that uses no variable occurring in the
third atom of T. Here a path is an alternating sequence of relations and
variables 𝑅1 − x1 − 𝑅2 − · · · x𝑝−1 − 𝑅𝑝 s.t. all adjacent relations 𝑅𝑖 , 𝑅𝑖+1
share variables x𝑖 . In a query 𝑄 with atoms 𝑅 and 𝑆, we say 𝑅 dominates
𝑆 iff var(𝑅) ⊂ var(𝑆). We call an atom 𝑔 in a query independent iff there
is no other atom in the query that contains a strict subset of its variables

‡‡ The concept is alternatively called coherence, the running intersection property, connected
subgraph property [13, 15, 151], and is used in the definition of the junction tree algorithm
[107] and tree decompositions [46, 139].

§§ This definition, introduced in Chapter 4, is more restrictive than linear queries defined
in the original work on resilience [59] as it does not allow linearizable queries (those that
can be made linear by “making dominated atoms exogenous”).
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𝑟𝑎 𝑠1 𝑡2 𝑟3 𝑠4 𝑡5

𝑥1 𝑥2 𝑥3

𝑟𝑏

w1 w2 w3

Figure 7.31: Theorem 7.9.1: Hard-
ness gadget for a query with triad
{𝑅, 𝑆, 𝑇}.

(and hence it is not dominated). A triad is active iff none of its atoms are
dominated.

Theorem 7.9.1 (minFACT is hard for queries with Active Triads) FACT(𝑄)
for a query 𝑄 with an active triad is NPC.

We notice that this proof is inspired by a result in [60]. It can easily
be adapted to also prove the hardness of triads for resilience and is
considerably simpler than the original proof in [59]. The key idea is that
in our proof construction, the chosen roots correspond to the minimum
vertex cover, or equivalently, the minimum number of input tuples to
cover, in order to remove all witnesses.

Proof Theorem 7.9.1. Let 𝑄 be a query with triad T= {𝑅, 𝑆, 𝑇}. We con-
struct a hardness gadget Figure 7.31 that can be used to build a reduction
from IndSet to any query 𝑄.

The hardness gadget is built with 3 witnesses. We assume that no variable
is shared by all three elements of T (we can ignore any such variable by
setting it to a constant). For the first 2 witnesses, only the variables of
atom 𝑇 are equal in both witnesses. Because 𝑇 is an independent atom,
its tuple will be the only common tuple between w1 and w2. The nodes
𝑥1 , 𝑥2 , 𝑥3 represent all the tuples of tables that are not part of the triad T.
Hence any query with a triad can create an instance of this gadget.

We see that the gadget has 2 minimal factorizations: 𝑟𝑎𝑠1𝑡2𝑥1∨ 𝑠4(𝑟3𝑡2𝑥2∨
𝑡5𝑥3𝑟𝑏) or as 𝑡2(𝑟𝑎𝑠1𝑥1 ∨ 𝑟3𝑠4𝑥2)∨ 𝑟𝑏𝑡5𝑠4𝑥3, both of which incur a penalty
of 1 and use one of 𝑟𝑎 or 𝑟𝑏 as root. We can represent these factorizations
with gadget orientations, such that each gadget is oriented from the root
of the factorization to the sink. Either of these factorizations must repeat
some variable (thus have at least a penalty of 1), for 𝑡2 or 𝑠4 respectively.
Since 𝑟𝑎 and 𝑟𝑏 may be connected to the other edges of the graph as well,
they may incur further penalties if they are not root nodes in more than
one factorization term.

To prove the problem is NPC, we reduce the Independent Set (IS) problem
to FACT(𝑄). An independent set (IndSet) of an undirected Graph 𝐺(𝑉, 𝐸)
is a subset of vertices 𝑉 ′ ⊆ 𝑉 , such that no two vertices in 𝑉 ′ are adjacent.
The IndSet problem asks, for a given graph 𝐺 and a positive integer
𝑘 ≤ |𝑉 |, whether 𝐺 contains an independent set𝑉 ′ having |𝑉 ′|≥ 𝑘, which
we write as (𝐺, 𝑘) ∈ IndSet.

IndSet ≤ FACT(𝑄★
3 )

Proposition 7.9.2 (Connection of factorization and independent set:
Direction 1) D has a factorization with a penalty 2|𝐸|−𝑘 if 𝐺 has an
independent set of size 𝑘.
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Figure 7.32: Theorem 7.9.1: Exam-
ple graph with an independent set
{1, 3, 5}. By orienting all edge di-
rections towards the independent
sets (and thus making them sink
nodes), we achieve a factorization
with penalty 2|𝐸|−3 = 7. The penal-
ties at endpoints 3 and 4 are 1, else-
where 0. Additionally, each of the
5 edges is encoded with the path
gadget and has an internal penalty
of 1 each.

Proof Proposition 7.9.2. If 𝐺 has an independent set of size 𝑘 then a fac-
torization can be constructed corresponding to an edge orientation that
points all edges towards nodes in the independent set. A minimum
penalty of |𝐸| is guaranteed to be incurred as there is a penalty either on
𝑡3 or 𝑠5 for every gadget. What we need to reason about is the additional
penalties that are incurred by the nodes at the end of the gadget. For
every node, it is counted in the factorization only once as root, and as
many times as a non-root as it has incoming edges. If a node ever acts as a
root, then its penalty is equal to the number of incoming edges, however,
if it is never a root, then the penalty is the number of incoming edges −1.
We construct an edge orientation such that any member of a maximum
independent set never acts as the root, as shown in Figure 7.32. This
construction is always possible since no members of the independent set
are connected. The total factorization penalty then is the total incoming
edges over all nodes - the size of the independent set. Since all |𝐸| edges
are an incoming edge for some node, the penalty due to 𝑘 nodes is then
|𝐸|−𝑘. The total penalty is hence |𝐸|+|𝐸|−𝑘 or |2|𝐸|−𝑘.

Proposition 7.9.3 (Connection of factorization and independent set: Di-
rection 2) If 𝐺 has no independent set of 𝑘 then D cannot have a factorization
with penalty 2|𝐸|−𝑘.

Proof Proposition 7.9.3. For D to have a factorization with penalty 2|𝐸|−𝑘
there would have to be 𝑘 gadgets with penalty exactly equal to 1 thus
implying the presence of 𝑘 sink nodes. Since 𝑘 sink nodes form an
independent set of size 𝑘, D cannot have a factorization with penalty
2|𝐸|−𝑘.

Propositions 7.9.2 and 7.9.3 together finish the reduction.

Separation between RES and minFACT. A triad is deactivated if any of the
three atoms is dominated. A triad is co-deactivated if all three atoms are
dominated only by the same (non-empty) set of atoms. The co-deactivated
triangle query 𝑄△cod :−𝐴(𝑤), 𝑅(𝑤, 𝑥, 𝑦), 𝑆(𝑤, 𝑦, 𝑧), 𝑇(𝑤, 𝑧, 𝑥) contains
no active triads: notice that the tables 𝑅, 𝑆 and 𝑇 are not independent
and have no independent paths to each other. Thus, RES(𝑄△cod) is PTIME.
However, 𝑄△cod contains a co-deactivated triad since 𝑅, 𝑆 and 𝑇 are all
dominated only by atom 𝐴. We next prove that FACT(𝑄△cod) is NPC, thus
showing a strict separation in the complexities of the two problems.
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6

Dominated Triangle Hardness

T(w1, 𝑥𝑥1, 𝑧𝑧1) R(w1, 𝑥𝑥1,𝑦𝑦1)

S(w1,𝑦𝑦1, 𝑧𝑧1)
A(𝑤𝑤1)

S(w1,𝑦𝑦1, 𝑧𝑧2)

T(𝑤𝑤1, 𝑥𝑥1, 𝑧𝑧2)

T(w1, 𝑥𝑥2, 𝑧𝑧2)

R(w1, 𝑥𝑥2,𝑦𝑦1)

Figure 7.33: Theorem 7.9.4: Hard-
ness gadget for 𝑄△cod

Theorem 7.9.4 (minFACT is hard for queries with Co-Deactivated Triads)
FACT(𝑄) for a query 𝑄 with a co-deactivated triad is NPC.

A slight modification of the gadget from Theorem 7.9.1 can be used to
show that this class of queries is hard for minFACT, although it is easy for
RES.

Proof Theorem 7.9.4. We construct a hardness gadget Figure 7.33 that can
be used to build a reduction from IndSet. The hardness gadget is built
with 3 witnesses. It is essentially the same hardness as Theorem 7.9.1,
with the addition of a table that dominates all tables in the co-deactivated
triad 𝐴(𝑤). We keep the value of the variable 𝑤 fixed to 𝑤1 in all gadgets.
Then 𝑤1 must be the root in the minFACT, and the endpoints now denote
the root of a factorization assuming 𝐴(𝑤1) has been factored out. We
see that the endpoints 𝑇(𝑤, 𝑥, 𝑧) are independent of all other tables in
the gadgets excluding 𝐴(𝑤). Since only a single 𝐴(𝑤) tuple will be used
through all the partitions, joining these gadgets will not lead to any
unexpected witnesses.

We see that the gadget has 2 minimal factorizations: both of which incur
a penalty of 1 and use one of 𝑇(𝑤1 , 𝑥1 , 𝑧1) or 𝑇(𝑤1 , 𝑥2 , 𝑧2) as root. We can
use these factorizations as graph orientations as in Theorem 7.9.1 and
the rest of the reduction is identical.

7.10 Application: A complete approach for
Approximate Probabilistic Inference

Definition 7.10.1 (Probabilistic query evaluation) Given a Boolean query
𝑄, a database D, and a function 𝑝 that assigns an independent probability
to each tuple. Probabilistic query evaluation PROB(𝑄, 𝐷, 𝑝) computes the
marginal probability ℙ[𝑄, D, 𝑝] (i.e., the probability that 𝑄 evaluates to true
in a randomly chosen world).

An important contribution of the database community to probabilistic
inference has been the identification of tractable queries and database
instances that allow exact evaluation in PTIME. Approaches towards
identifying tractable cases are either at the query level (thus only look
at the query and ignore the database [39, 40]) or at the data-level i.e.
from the actual provenance polynomial [141, 147]. A practical concern
with approaches that focus on tractable cases is that they provide only
“partial” solutions; they offer none for the non-tractable cases which then
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Query-level Data-level
Partial so-
lution

[39]: dichotomy that has a
PTIME solution iff the query
is hierarchical

[141, 147]: PTIME solution iff
the provenance polynomial
is read-once (which includes
[39] as special case)

Complete
solution

[66]: PTIME approximation for
any query (recovers the PTIME
cases of [39], but approximates
some cases of [141])

this paper: finding the mini-
mum factorization includes all
other three solutions [39, 66,
141] as special cases

Figure 7.34: Connection of the prob-
lem formulation and solutions in
this chapter with prior results on
exact or approximate solutions for
probabilistic evaluation of sj-free
conjunctive queries.

need separate approximate methods, usually based on Monte Carlo
approximations [19, 39, 137] or anytime approximation schemes based
on branch-and-bound provenance decomposition methods [56, 57, 92,
128]. A different line of work is “complete” in that it can answer all queries,
but it is query-centric [65, 66] and thus unnecessarily approximates cases
that would allow an exact PTIME solution if one looked at the concrete
database instance. Interestingly, a solution to the “minimal provenance
factorization" problem combines the best of both worlds (Figure 7.34): a
complete approach that includes all known tractable cases for exact inference as
special cases. We illustrate this in Example 7.10.1.

Example 7.10.1 (Provenance) Consider again the Boolean 2-star query
𝑄★

2 :−𝑅(𝑥), 𝑆(𝑥, 𝑦), 𝑇(𝑦) over the database in Figure 3.1 (ignore tuple
𝑠13 for now) as in Example 3.2.1. Each tuple is annotated with a Boolean
variable 𝑟1 , 𝑟2 , . . ., representing the independent event that the tuple is
present in the database. The provenance 𝜑 is the Boolean expression
that states which tuples need to be present for 𝑄★

2 to be true:

𝜑 = 𝑟1𝑠11𝑡1 ∨ 𝑟1𝑠12𝑡2 ∨ 𝑟2𝑠23𝑡3 ∨ 𝑟3𝑠33𝑡3 (7.3)

Here, the color blue indicates tuple variables that are repeated in the
expression. Evaluating the probability of 𝑄★

2 is #P-hard according to
the dichotomy by Dalvi and Suciu for SJ-free CQs [39]. This means
that for database instances of increasing sizes, the evaluation becomes
infeasible, in general. However, the dichotomy does not take the actual
database into account, and Roy et al. [141] and Sen et al. [147] later
independently proposed a PTIME solution for particular database
instances (including the one from this example) that allowed a read-
once factorization. This is a factorized representation of the provenance
polynomial in which every variable occurs once, and which can be
found in PTIME in the size of the database:

𝜑′ = 𝑟1(𝑠11𝑡1 ∨ 𝑠12𝑡2) ∨ (𝑟2𝑠23 ∨ 𝑟3𝑠33)𝑡3

Another approach called query dissociation [66] can evaluate it only
approximately with an upper bound that is calculated with a “proba-
bilistic query plan”

𝑃 = 𝜋
𝑝
−𝑥 Z

𝑝[𝑅(𝑥),𝜋𝑝
−𝑦 Z

𝑝[𝑆(𝑥, 𝑦), 𝑇(𝑦)]] (7.4)

where the probabilistic join operator Z𝑝[ . . . ] in prefix notation and
the probabilistic project-away operator with duplicate elimination
𝜋𝑝 compute the probability assuming that their input probabilities
are independent [61]. This approach intuitively leads to a read-once
upper-bound expression in which formerly repeated variables are now
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replaced by fresh copies (indicated by the new indices):

𝜑′′ = 𝑟1(𝑠11𝑡1 ∨ 𝑠12𝑡2) ∨ 𝑟2𝑠23𝑡
′
3,1 ∨ 𝑟3𝑠33𝑡

′
3,2 (7.5)

The exact approaches listed above are important milestones as they
delineate which cases can be calculated efficiently or not. However, an
important problem is that even the data-level approaches [141, 147] are
only “partial”, i.e. when we make a minor modification to the database,
they do not work anymore, as illustrated next.

Example 7.10.2 (continued) Consider again adding one tuple 𝑠13 to
the database as in Example 7.2.1: it is shown as a red dashed line in
the join graph of Figure 3.1. After this addition, the exact approaches
based on query level [39] or on instance read-once formulas [141] do
not work anymore.

An approach based on query dissociation with minimal query plans
[66] would choose one of two query-level factorizations with either
all tuples from 𝑅 or all tuples from 𝑇 as “root variables.” The solution
with 𝑅’s as root is:

𝜙 = 𝑟1(𝑠11𝑡1 ∨ 𝑠12𝑡2 ∨ 𝑠13𝑡3) ∨ 𝑟2(𝑠23𝑡3) ∨ 𝑟3(𝑠33𝑡3)

This would lead to variable 𝑡3 being repeated 3 times and expression
size 13. Similarly, approaches based on Shannon expansion [128] need
to start from such a factorization before repeatedly applying the
expansion until arriving at a read-once expression.

However, there is an optimal factorization that repeats one variable
only 2 times and has a total size of 12. Importantly, this factorization
needs to use different root variables for different witnesses:

𝜙′ = 𝑟1(𝑠11𝑡1 ∨ 𝑠12𝑡2 ∨ 𝑠13𝑡3) ∨ (𝑟2𝑠23 ∨ 𝑟3𝑠33)𝑡3

Our idea is to try to come as close as possible to a read-once factorization
in the general case by using dissociation-based bounds with the fewest
number of repeated variables necessary. This achieves a complete solution
(covering all queries and database instances). The problem is related
to various topics in databases and is best understood in the modern
formulation of provenance semirings [78, 79]. A minimal factorization can
also be used as input to anytime or exact algorithms relying on repeated
application of Shannon expansion [56]. Our problem generalizes the
problem of determining whether a propositional formula is read-once to
that of finding an expression of minimal size.

Example 7.10.3 (Example 7.10.1 continued) Consider the following
plan

𝑃′ = 𝜋
𝑝
−𝑥,𝑦 Z

𝑝[𝑅(𝑥), 𝑆(𝑥, 𝑦), 𝑇(𝑦)] (7.6)

It corresponds to a query dissociation ∆′ = ({𝑦}, ∅, {𝑥}) whereas
the plan shown in (7.4) corresponds to a dissociation ∆ = (∅, ∅, {𝑥}).
Thus, ∆ ⪯ ∆′ and we know from Theorem 7.4.3 that len(𝜑(𝑃∆)) ≤
len(𝜑(𝑃∆′ )) over any database. Let’s verify for the case of the database
in Figure 3.1 without the red tuple. 𝜑(𝑃∆) corresponds to (7.5) with
length 11 whereas 𝜑(𝑃∆′ ) corresponds to (7.3) with length 12.
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Figure 7.35: Subsection 7.10.1: Pa-
rameterized database instance for
evaluating probabilistic inference
with 2𝑘 probabilistic variables.

4 6 8 10 12 14 16 18 20
k (number of probabilistic tuples)

0.5

0.6

0.7

0.8

0.9

Er
ro

r b
ou

nd

Shannon Integral
MinFACT
Single Plan Figure 7.36: Subsection 7.10.1: Ex-

pected value of exact and approx-
imate probabilistic inference com-
parison for an increasing number of
tuples (x-axis is 𝑘).

7.10.1 A Proof-of-Concept for Improving Probabilistic
Inference

Setup. With Figure 7.36, we next generalize our setup from Figure 3.1b:
We again consider a database of format where one of the 𝑟 tuples is
connected to all 𝑡 tuples, and vice versa (Figure 7.35). But instead of 3
tuples, we now have 𝑘 tuples in tables 𝑅 and 𝑇, respectively (and 2𝑘 − 1
in 𝑆). We consider the query 𝑄∞3 , which has 2 minimal query plans, and
allow the 𝑅 and 𝑇 tables to take on probabilistic values (whereas tuples
in 𝑆 are deterministic, i.e. have probabilities 1). We investigate if the
minimal factorization indeed leads to better probabilistic bounds as 𝑘
increases.

Methods. Exact probabilistic inference is hard for this case, and we use
Shannon expansion to obtain the exact probabilities as a baseline. As
comparison, we use the minimal factorization of this expression (which
is not read-once) and the expression obtained by evaluating the database
under a single dissociated query plan.

Evaluation. For all three expressions, we calculate the expected prob-
ability assuming that each of the 2𝑘 tuples can take on a probability
independently sampled from a uniform random probability in [0, 1]. To
calculate that expected value, we integrate over all variables. Thus, for
an instance with just 𝑘 = 2 tuples in 𝑅 and 2 𝑇, respectively, we per-
form a quadruple integral. We performed these integrations in Wolfram
Mathematica [138] and were only able to scale to 20 repeated integrals.
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Results. We plot the integral of the expected probability over the whole
space on the y-axis, and the x-axis shows the number 𝑘 of probabilistic
variables. We see that with increasing variables 𝑘, minFACT converges to
the exact probabilistic inference given by Shannon expansion, while a
single plan dissociation gives increasingly worse approximations.

7.11 Optimizations for computing minFACT

We think of minFACT as the problem of assigning VEOs to each witness
to optimize len. Each witness chooses between |mveo| VEOs. However,
it is not necessary that each must choose from the same set. For some
witnesses, some VEOs can be directly eliminated (or pruned) and thus
their set of choices for those witnesses is reduced. The pruning is done
based on “degree statistics” which summarize information about how
many witnesses share a given subset of the domain values of a given
witness. This optimization can be thought of as a preprocessing step for
both the ILP and the MFMC-based algorithm.

Example 7.11.1 (VEO Pruning) Consider query 𝑄★
3 query and a

database instance that contains 2 witnesses: w1 = (𝑟1 , 𝑠1 , 𝑡1 , 𝑤111)
and w2 = (𝑟1 , 𝑠2 , 𝑡2 , 𝑤122) (or w1 = (𝑥1 , 𝑦1 , 𝑧1) and w2 = (𝑥1 , 𝑦2 , 𝑧2) in
the domain values perspective). The only tuple they have in common
is 𝑟1 and the only variable they have in common is 𝑥1. We say that the
degree (or count) of 𝑥1 in w1 is 2. We can intuitively see that a minimal
factorization would have 𝑟1 as a “root” i.e. would use a VEO in which
the 𝑥1 is a prefix.

Degree Statistics. We leverage degree statistics of tuples participat-
ing in a witness to filter its potential query plan assignments. Given
a witness w and strict subset of attributes {𝑥1 , 𝑥2 , . . . 𝑥𝑘}, we define
count(𝑥1 , 𝑥2 , . . . 𝑥𝑘) as the number of witnesses that have the same valua-
tion of these attributes. Each degree statistic can be calculated by a simple
group-by and aggregation. We calculate the degree statistics for all sets
in the powerset of var(𝑄). The number of such statistics is exponential in
the size of the query, but polynomial in the data size, and in practice the
time to compute all such statistics is small (see experimental figures).

Example 7.11.2 (Example 7.11.1 continued) We compute the degree
statistics over the example: w1 has 𝑐𝑥 = 2, 𝑐𝑦 = 1, 𝑐𝑧 = 1, 𝑐𝑥𝑦 = 1, 𝑐𝑦𝑧 =
1 and 𝑐𝑥𝑧 = 1. w2 has the exact same statistics.

Pruning Rule. Given two VEOs 𝑣1 and 𝑣2 with the roots of the trees being
composed of the set of variables r1 and r2, we can apply the following
rules:

If count(𝑟1) == count(𝑟1 + 𝑟2) and count(𝑟1) <count(𝑟2) :
Eliminate Plan 𝑣1

Elif count(𝑟2) == count(𝑟1 + 𝑟2) and count(𝑟2) <count(𝑟1) :
Eliminate Plan 𝑣2

Elif count(𝑟1) == count(𝑟2) == count(𝑟1 + 𝑟2) and
count(𝑟2) = count(𝑟1) :

Assign Equivalence Class {𝑣1 , 𝑣2}
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Example 7.11.3 (Pruning Rule) Continuing our setup, we see that
for witness 𝑥1𝑦1𝑧1, count(𝑦1) = count(𝑥1𝑦1) and that count(𝑦1) <
count(𝑥1). Thus, we can eliminate plans with the root 𝑦1, i.e. the two
plans 𝑦←𝑥← 𝑧 and 𝑦← 𝑧←𝑥.

We can apply the pruning rule again in the same manner to eliminate
two plans with 𝑧1 as the root. The same pruning will also apply to 𝑤2.

Recursive Application of Pruning Rule. Consider 2 VEOs 𝑣1 and 𝑣2 with
the same root 𝑟, but then we compare all the children subtrees of 𝑟 and
apply the pruning rule recursively to further prune between plans with
same root.

Example 7.11.4 (Recursive Pruning) After the pruning in the last step,
we are left with two plans 𝑥← 𝑦← 𝑧 and 𝑥← 𝑧← 𝑦. We now prune at
tree level 2. We see that count(𝑥𝑦) = count(𝑥𝑧) = count(𝑥𝑦𝑧). Thus,
we assign an equivalence class {𝑥𝑦, 𝑥𝑧}

Equivalence Classes. At the end of all the pruning, we look at our
collected equivalence classes. If two VEOs are in an equivalence class, this
implies that all else being equal, both plans will lead to equal len. Thus,
if we have multiple plans from the same equivalence class, we remove all
but one arbitrarily.

Example 7.11.5 (Equivalence Classes) Since {𝑥𝑦, 𝑥𝑧} are in an equiva-
lence class, and we have finished our pruning, we arbitrarily remove
plans with the prefix 𝑥𝑧. Thus, we are left with sole plan 𝑥← 𝑦← 𝑧.
We were able to reduce both witnesses from 6 to 1 plan in this very
easy example. (Note that in other cases, different witnesses may have
different degree statistics and hence reach a different set of pruned
plans).

Proof of Correctness of Optimization.

1. Correctness of the Pruning Rule: Consider the case where with
VEOs 𝑣1 and 𝑣2 where count(𝑟1) = count(𝑟1 + 𝑟2) and count(𝑟1) <
count(𝑟2). Let us assume that a witness 𝑤1 necessarily needs 𝑣1 for
a minimal factorization of the instance. We take all witnesses that
share 𝑟1 and 𝑟2 and if they use 𝑣1 as their VEO, we switch them to
𝑣2. Notice that count(𝑟1) = count(𝑟1 + 𝑟2) implies that whichever
witnesses share 𝑟1, also share 𝑟2. So switching a subset of these
witnesses over from 𝑣2 to 𝑣1 can repeat no additional variables
since it is never worse to factor out 𝑣2 first (which they all share
anyway). For witnesses that contain 𝑟1 and 𝑟2 but did not use 𝑣1
plan, they could possibly incur penalties on a subset of 𝑟1 that
they used as prefixes. However, as count(𝑟1) < count(𝑟2), there is
a greater prevalence of 𝑟2 variables that can be repeated and so
they are never negatively affected by the switch. Thus switching to
𝑣2 can only lead to better or equal factorization hence the pruning
rule is always correct.

2. Correctness of Equivalence Classes: We can use the same logic as
that of the pruning rule to show that when count(𝑟1) = count(𝑟2) =
count(𝑟1 + 𝑟2) andcount(𝑟2) = count(𝑟1), then neither 𝑣1 nor 𝑣2 can
be worse than each other.

3. Correctness of Repeated Application: If each pruning rule applica-
tion is correct, then for every plan that is pruned, there exists an
unpruned plan that leads to a better or equal len. Since the rules
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are applied linearly and not in parallel, we can safely repeatedly
apply the rule until applicable.

7.12 Experiments

We implemented our ILP, LP relaxation, and the MFMC-based algorithm
as LP¶¶ by using Python 3.8.5 for the pre-processing of the provenance
and creating the problem encoding, and then Gurobi Optimizer 8.1.0 [83]
for solving the respective optimization problems. Our goals are to evaluate
1) the running times, and 2) the size of resulting factorizations. In this
section we illustrate our results and show three interesting takeaways:
1) ILP is, as expected, exponential in the size of the program, in general.
The MFMC-based algorithm is not and can thus speed up the evaluation
quite drastically. While it comes with no guarantees for hard cases, it
approximates the minimum size quite well. 2) For queries that we have
shown are in PTIME, the ILP solver is comparably fast as the LP and all
algorithms provide the correct solution. 3) The optimizations described
in Section 7.11 further speed up the evaluations in a way that Gurobi
cannot.

For both the ILP and MFMC-based algorithms, the optimizations are
applied during a preprocessing step and simplify the resulting ILP and
MFMC formulations (Section 7.11). The intuition is that based on how
each witness interacts with other witnesses (i.e. based on some degree
statistics obtained by simple group-bys), we can mark certain minimal
query plans as unnecessary for a minimal factorization.‗‗‗ Being able to
find such optimization is notable since it implies we are identifying and
leveraging structural properties of the problem based on the minimal query
plans that are difficult to extract in the same time by the state-of-the-art
ILP solver Gurobi.

7.12.1 Experimental Setup

Software and Hardware. We implement the algorithms using Python
3.8.5. and solve the respective optimization problems with Gurobi
Optimizer 8.1.0 [83], a commercial and highly optimized solver. The
experiments are run on an Intel ® Core™ i7-1065G7 CPU @ 1.30GHz
machine with 132 GB RAM.

Experimental Protocol. We focus on 5 queries: the two hard queries
𝑄★

3 and 𝑄△, the two easy queries 𝑄△
𝐴

, 𝑄∞4 , and finally query 𝑄∞5 which
we hypothesize to be easy. We first create a random database instance
by fixing a number of tuples to sample, and sampling attribute values
independently for each attribute (and removing duplicates) and pa-
rameterized by total tuples in the instance. We then run a provenance
query and store the resulting provenance (and its size). On this database
instance, we then run our five algorithms: ILP, ILP (OPT), MIN-CUT,
MIN-CUT (OPT), and LP. Here (OPT) refers to executing an algorithm
after applying preprocessing optimizations described in Section 7.11.

¶¶ The MFMC-based algorithm can be encoded as an LP since the min-cut problem itself
can be encoded as an LP

‗‗‗ We also believe that a similar pruning algorithm will be instrumental in achieving a
PTIME factorization flow graph algorithm for other linear queries by eliminating nodes
that cause leakage.
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7.12.2 Experimental Results

In this section, we empirically evaluate 5 queries discussed throughout the
paper and not only gather some empirical support about the complexities
we show in the paper but also gain some insight into the effectiveness
of the optimizations and if advanced ILP Solvers can detect our PTIME
Cases.

The “Penalty” of a factorization is the length (len) minus the number of
different tuple variables. The Approximation Ratio (AR) measures the
relative increase of the penalty of an algorithm to the minimal penalty. The
ILP and ILP (OPT) algorithms are guaranteed to find the optimal solution,
i.e. +0%. While the MFMC-based algorithm provides no guarantees for
NPC queries, we show that it provides a good approximation.

We can see that the MFMC-based algorithm contains more constraints
and variables than the ILP problem (we must add a flow conservation
constraint for each node in the graph, which includes nodes for corre-
sponding ILP variables, plus connector nodes). However, since it is solved
as an LP optimization problem instead of an ILP optimization, it is much
faster. We also notice that the optimized algorithm decreases the number
of constraints in the MFMC-based algorithm by 15%. The number of
constraints does not decrease in the ILP, but because the Query Plan
Constraints involve fewer variables, the constraints are less complex and
the ILP can be solved faster.

𝑄★
3 Figure 7.37a. The 3-Star query is a hard query with an active triad and
|mveo|= 6. For this query, the provenance computation time and problem
creation time are small compared to the time needed to solve the ILP.
The optimized prepossessing step reduces the time for the ILP solution by a
tenth, while the MFMC-based algorithm is ≈ 60 times faster than the ILP.
This is expected as the min-cut algorithm is PTIME while the ILP is not.
We see here that the Linear Program is faster than the Flow algorithm,
however, it has a worse approximation ratio (+2.781% instead of +0.632%
- but still within the proved bound of 6 for this query).

𝑄△ (Figure 7.37b). The triangle query is a hard query with |mveo|= 3. We
see in the figure that since there are just 3 minimal VEOs, the effect of the
optimization is not very much. In fact, for the MFMC-based algorithm,
the longer time to create the optimized version is not paid off in the
solve time. However, as expected for a hard query, we see that the PTIME
MFMC-based algorithm is must faster than the exact ILP. The MFMC-
based algorithm enables us to get a very close approximation in less than
one-fourth of the time. In this case, the Linear Program, also a PTIME
algorithm, is slower than the MFMC-based algorithm but gives an exact
solution!

𝑄△
𝐴

(Figure 7.37c). Next, we look at the very structurally similar but
easy query, 𝑄△

𝐴
with |mveo|= 3. Here we see surprisingly that the ILP

is faster than the MFMC-based algorithm! Notice that for this query
we have shown that both algorithms are exact. This is because an opti-
mized ILP Solver like Gurobi can leverage the fact that LP polytope has
integral optimal vertices and solve the ILP in PTIME (even though the
ILP constraints do not follow traditionally PTIME structures like Total
Unimodularity, it leverages some structure in the matrix that makes it
PTIME solvable). Since there are indeed more variables and constraints
in the MFMC-based algorithm, the ILP turns out to be faster.
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𝑄∞4 (Figure 7.37d). The 4 chain query is PTIME like 𝑄△
𝐴

but with |mveo|= 5
and has a similar graph to 𝑄△

𝐴
. Here again, the guarantee of the MFMC-

based algorithm being exact is fulfilled, the pruning offers some benefit,
and the ILP is faster than the MFMC-based algorithm due to the smaller
problem size and some innate structure discovered by the solver. The
Linear Program, which has always returned the optimal solution, is
significantly faster.

𝑄∞5 (Figure 7.37e). The 5 chain query has |mveo|= 14, and we believe it
to be easy, but do not yet have proof for the same. In this case, too, we
believe that the Gurobi solver has some tricks that make the ILP run faster
than exponential. (Notice that a bigger instance with more than double
the size of mveo is solved faster than 𝑄★

3 in Figure 7.37a). In addition,
the Linear Program is optimal. This backs up our hypothesis that the
query is in PTIME. While the MFMC-based algorithm is not optimal in
this case, we see that applying our pruning rules helps eliminate leakage
paths and gives us a better approximation as well. We hypothesize that
there exists a set of pruning rules that make the MFMC-based algorithm
optimal for all Linear Queries (which we hypothesize are all in PTIME).
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#Constr. #Vars LEN Penalty AR

ILP 9,840 10,918 2,716 1,582 -

ILP (OPT) 7,234 5,706 2,716 1,582 -

MIN-CUT 35,612 31,488 2,726 1,592+0.632%

MIN-CUT (OPT) 30,400 26,276 2,726 1,592+0.632%

LP 9,840 10,918 2,760 1,626+2.781%
0 25 50 75 100 125

Time (in seconds)

 1.0

 2.2

 2.3

 95.1

 117.5
3Star: Runtime Comparison, |W|=984

Solve
Create
Provenance

(a) 𝑄★
3 (NPC query) instance with 984 witnesses

#Constr. #Vars LEN Penalty AR

ILP 56,836 46,256 29,512 25,883 -

ILP (OPT) 56,836 46,256 29,512 25,883 -

MIN-CUT 206,184 198,926 29,523 25,894 +0.042%

MIN-CUT (OPT) 206,184 198,926 29,523 25,894 +0.042%

LP 56,836 46,256 29,512 25,883 +0.0%
0 20 40 60 80

Time (in seconds)

 23.0

 14.8

 14.3

 53.9

 64.1
Triangle: Runtime Comparison, |W|=14209
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Create
Provenance

(b) 𝑄△ (NPC query) instance with 14, 209 witnesses
#Constr. #Vars LEN Penalty AR

ILP 36,185 24,667 15,397 12,441 -

ILP (OPT) 36,180 24,657 15,397 12,441 -

MIN-CUT 107,230 115,792 15,397 12,441 +0.0%

MIN-CUT (OPT) 107,220 115,782 15,397 12,441 +0.0%

LP 36,185 24,667 15,397 12,441 +0.0%
0.0 2.5 5.0 7.5 10.0 12.5

Time (in seconds)

 2.2

 9.4

 7.3

 3.0

 2.4
TriangleUnary: Runtime Comparison, |W|=7237
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Create
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(c) 𝑄△
𝐴

(PTIME query) instance with 7, 237 witnesses

#Constr. #Vars LEN Penalty AR

ILP 1,999,880 663,203 5,600 4,197 -

ILP (OPT) 1,997,896 662,554 5,600 4,197 -

MIN-CUT 1,561,6863,999,760 5,600 4,197 +0.0%

MIN-CUT (OPT) 1,562,3723,996,784 5,600 4,197 +0.0%

LP 1,999,880 663,203 5,600 4,197 +0.0%
0 200 400 600

Time (in seconds)

 153.4

 321.6

 397.3

 272.4

 172.0
4Chain: Runtime Comparison, |W|=117640

Solve
Create
Provenance

(d) 𝑄∞4 (PTIME query) instance with 117, 640 witnesses

#Constr. #Vars LEN Penalty AR

ILP 591,795 239,675 2,192 1,454 -

ILP (OPT) 356,306 123,830 2,192 1,454 -

MIN-CUT 505,652 1,183,590 2,209 1,471 +1.169%

MIN-CUT (OPT) 628,970 890,116 2,202 1,464 +0.688%

LP 591,795 239,675 2,192 1,454 +0.0%
0 50 100 150 200

Time (in seconds)

 86.3

 128.3

 107.4

 59.1

 83.6
5Chain: Runtime Comparison, |W|=13151

Solve
Create
Provenance

(e) 𝑄∞5 (PTIME query) instance with 13, 151 witnesses

Figure 7.37: Experimental study of
time and factorization length for 5
queries over all algorithms.
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7 Minimal Factorization of Provenance Formulas

7.13 Chapter Summary

We propose a unified algorithm for minimizing the size of provenance
polynomials for sj-free CQs. We show that our problem is NPC and thus
in a lower complexity class than the general Minimum Equivalent Expres-
sion (MEE) problem. Key to our formulation is a way to systematically
constrain a space of possible minimum factorizations thus allowing us
to build an ILP, and connecting minimal variable elimination orders to
minimal query plans developed in the context of probabilistic databases.
We complement our hardness results with two unified PTIME algorithms
that can recover exact solutions to a strict superset of all prior known tractable
cases.
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This chapter deals with a question that is tangential to the other parts
of the dissertation, but a question we believe is interesting in its own
right. Even though unified algorithms offer theoretical guarantees for all
known tractable cases, and one does not hope for tractable algorithms for
NP-Hard cases - there still is usually left the challenge of showing that a
problem is NP-Hard. This is usually a difficult, creative endeavor, and it
can be a roadblock in proving complexity dichotomies. Our goal in this
chapter is to use computational tools to automate this process, and thus
discover new complexity reductions.

This chapter focuses again on the problem of resilience explored in
Chapter 4, but we believe that the ideas in this chapter can be naturally
extended beyond this specific problem.

8.1 Related Work

Prior work in Computationally Generated Hardness Gadgets. Although
it is a very natural idea to use computational tools to help the often
challenging task of finding hardness reductions, we are aware of very
few works in this direction. The earliest approach we are aware of is from
2010 [36]. They use SAT solvers (unlike our approach with DLP solvers),
which leads to multiple independent solver calls (since the SAT solvers
have lower expressibility). More recent work [77] adopts a formalism
called “cookbook reductions”, which are in some ways more general than
the reductions in this chapter (we focus only on edge gadgets), however
are limited to decision problems. The focus of their work is on gadget
verification and use in a classroom, rather than coming up with new
complexity reductions (as we do).

Disjunctive Logic Programs (DLPs). Disjunctive Logic Programs are
Logic Programs that allow disjunction in the head of a rule [41, 135].
DLPs have been shown to be Σ2

𝑝-complete [50, 51], and thus are more
expressive than Logic Programs without disjunctions that are NPC. The
key to higher expressivity is the non-obvious saturation technique that
can check if all possible assignments satisfy a given property [49]. Logic
Programs have been used for database repairs [69] and for determining
the responsibility of tuples in a database [16]. We go beyond this to build
a DLP that searches a certificate that proves that solving the resilience /
responsibility problem is NPC for a given query. We represent our DLP
as an Answer Set Program (ASP) [52] and use clingo [68] to solve it.

8.2 Automatic Hardness Gadgets for Resilience

We introduce a Disjunctive Logic Program DLP[RESIJP] that finds ĲPs to
prove hardness for RES. Each DLP requires 𝑄, a domain 𝑑 (which bounds
the size of the ĲP), and two endpoints S,T.‗ DLP[RESIJP] programs

‗ Since the number of possible endpoint configurations is polynomial in the query size, we
can simply run parallel programs for different endpoints as input. Notice that endpoints
𝑒1 = {𝐴(1)}, 𝑒2 = {𝐴(2)} is exactly the same as 𝑒1 = {𝐴(3)}, 𝑒2 = {𝐴(4)} since the actual
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are generated automatically for a given input, are short (200-300 lines
depending on the query) and leverage many key technical insights used
to model DLPs.

The goal of DLP[RESIJP] is to find a database that fulfills the conditions
of Definition 4.5.2. The search space is a database with all possible tuples
given domain 𝑑 (thus of size O(𝑑𝑎) where 𝑎 is the maximum arity of any
relation). Each tuple in the search space must be either “picked” in the
target database or not. The constraints of our definition are modeled
as disjunctive rules with negation. We solve our DLP with the open-
source ASP solver clingo [68] which uses an enhancement of the DPLL
algorithm [43] (used in SAT solvers) and works far faster in practice than
a brute force approach. Here we talk about the overall structure and
intuition, and a concrete end to end example is available in Chapter B.

1. Search Space: For all relations in 𝑄, we initialize all possible tuples
permitted in domain 𝑑 as input facts and provide them with an
additional tuple id (TID). Thus, each relation 𝑅 has a corresponding
relation in the program with arity(𝑅)𝑑 facts.

2. “Guess” an ĲP: Each tuple either participates in the ĲP or not.
We follow the Guess-Check methodology [53] and use a relation
indb(𝑅, TID, 𝐼) to “guess” for each tuple whether it is in the ĲP
database or not. Here 𝑅 stands for a relation and together with TID
uniquely identifies a tuple. The binary value 𝐼 is 1 if the tuple is in
the ĲP, and 0 otherwise.

3. Enforce JP endpoint conditions: Since the endpoints are considered
“input”, we do not need to check condition (3𝑖) for the JP endpoints
(Definition 4.5.1). However, we need to verify condition (3𝑖𝑖) as it
depends on the other tuples in the ĲP and translate the condition
directly into a logic rule.

4. Calculate Resilience using “Saturation”: We solve a problem that
is NPC (i.e. check that there is a valid contingency set of size 𝑐), and
a problem that is co-NP-complete (i.e. there is no valid contingency
set of size 𝑐−1). For solving the NP problem we use the guess-check
methodology and to solve the co-NP problem, we use the saturation
technique.

5. Enforce OR-property: We calculate resilience for 4 databases using
the previous step: our original “guess”, and the guess with either
or both endpoints removed. The removal of endpoints here simply
implies defining a new relation that has all tuples of 𝑖𝑛𝑑𝑏 except
the removed endpoint tuples.

6. Enforce non-leaking composition: We define a mapping relation
to create 3 isomorphs of the tuples in 𝑖𝑛𝑑𝑏. We combine them into
one database and check that computing query 𝑄 results in exactly
3 times the number of original witnesses.

7. (Optional) Minimize the size of the ĲP: To generate smaller
certificates that are more human-readable, we simply minimize
the number of witnesses in the ĲP. We use weak constraints [52] to
perform this optimization.

Corollary 8.2.1 (Sufficient hardness condition via Hardness Gadgets) If
there is a domain 𝑑 and endpoints S,Tsuch that DLP[RESIJP(𝑄, 𝑑,S,T)]
is satisfiable, then RES(𝑄) is NPC.

value does not matter. In practice, we used any subset of endogenous tuples from a
canonical database that can be shared across two witnesses without creating another
witness.
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30

Fig_Autogen_IJP3

q3ccS :-R(x,y),R(y,z),R(w,z),S(w,z)

𝑧𝑧6: − A(x),R(x,y),R(y,y),R(y,z),C(z)q3perm−R
SxyC :- S(x,y),R(x,y),R(y,z),R(z,y),C(z) q3perm−R

ASxy :- A(x),S(x,y),R(x,y),R(y,z),R(z,y)

q3perm−R
SxyB :- S(x,y),R(x,y),B(y),R(y,z),R(z,y)

230416

Figure 8.1: Automatically generated and visualized ĲPs for 5 previously open queries. The nodes corresponding to tuples
in S∪Tare in red.

Corollary 8.2.2 (Complexity bound of finding Hardness Gadgets) It is
in Σ2

𝑝 of 𝑑 to check if a query 𝑄 can form an ĲP of domain size 𝑑 or less.

The guarantees of our DLP is one-sided: if it finds a certificate, then
resilience of the query is guaranteed to be NPC. If it does not provide
a certificate, then we have no guarantee. So far we have not found any
query that is known to be hard and for which our DLP could not create a
certificate for 𝑑 = 3 · |var(𝑄)|. We conjecture it is not only a sufficient but
also complete algorithm for 𝑑 = 7 · |var(𝑄)| (i.e. if the algorithm does not
find a certificate for 𝑑 = 7 · |var(𝑄)|, then the query is in PTIME).

Conjecture 8.2.3 (Necessary hardness condition) If there are no endpoints
S,T such that DLP[RESIJP(𝑄, 𝑑,S,T)] is satisfiable for domain 𝑑 = 7 ·
|var(𝑄)|, then RES(𝑄) is in PTIME.

8.3 Scalability Experiment of newly found hard
query

We run an experiment with synthetic data using the same experimental
setup described in Section 7.12. The purpose here is to see if the hardness
of the query is obvious from the performance of a unified ILP formulation.
Surprisingly, the answer turns out to be no, further motivating the need
of counter-intuitive hardness certificates to understand the tractability
landscapes of RDM problems.
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Figure 8.2: RES for a newly proven
hard SJ query.

Self-Join Queries with newly founded hardness. Figure 8.2 investigates
𝑧6 whose complexity we proved in to be hard automatically. Although
resilience for this query is hard, it is unlikely to create a random database
instance where solving resilience is actually difficult. Although the
domain is pretty dense and the database instance large, for all experiments
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8 Automatic Hardness Gadgets

we run, the LP solution is integral and identical to the ILP solution.
However, by using our ĲP, we could create an artificial synthetic database
with 21 witnesses for which the LP solution is fractional.

8.4 Chapter Summary

This chapter showed a sample of an interesting research direction: can
we use computational tools like DLP solvers to solve open complexity
problems in databases? We notice that the semantic properties we specify
in the definition of ĲPs and in the DLP, are dependent on the source
problem we reduce from (Vertex Cover), but not of the problem we are
trying to prove hardness for (resilience for a specific query). Thus, the
“OR-property” and “non-leaking composition” are a requirement for any
reduction from vertex cover, even for problems different from resilience.
This leads us to believe that these ideas are extensible beyond resilience,
or even RDM problems, and maybe widely useful in different contexts to
discover hardness gadgets.
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optimize Reverse Data Management queries in a “coarse-grained instance
optimal” manner. We show such unified algorithms by designing ILP
formulations such that we are guaranteed that their relaxations are tight
for all known tractable classes of inputs. Thus, our unified algorithms
are guaranteed to terminate in PTIME for all tractable instances, doing
away with the need for specialized algorithms for different tractability
criteria. We show that our proposed framework is theoretically grounded,
scalable and practical. However, there are still many interesting directions
to build on this work, which we outline in the rest of the chapter.

9.1 Future Directions

The dissertation leads to several natural questions and open directions
for future research.

Complexity Dichotomies for various RDM problems. Complexity
dichotomies for various RDM problems are still only known for the
restricted setting of self-join-free conjunctive queries and do not extend to
queries with self-joins or unions. While the ILP formalisms proposed in
this dissertation are correct and complete even for queries with self-joins
and unions, the complexity of these problems is still open. We conjecture
that our unified algorithms will be able to solve tractable cases discovered
in the future in PTIME as well, and that the LP relaxation will be tight
for such tractable cases. We hope that the techniques developed in this
dissertation can aid in proving complexity dichotomies for this broader
class of queries - both by using our unified algorithms as “computational
hints” and by using our new proof techniques to prove the tractability
of new cases. A further direction of research could be to automatically
search for tractable algorithms (if they exist) by looking for correct flow
representations of the problem.

RDM problems for queries beyond Conjunctive Queries. The focus
of this dissertation has been limited to Conjunctive Queries, with and
without self-joins. In Chapter 6, we showed that our unified algorithms
capture unions of conjunctive queries as well. However, in practice, one
may want to ask Reverse Questions over more complicated forward
transformations. An interesting and useful class of queries to study such
problems are Regular Path Queries. Although they are more restricted
than Conjunctive Queries in that they are restricted to relations of binary
arity and path queries, they are more general since they allow disjunc-
tions and infinite queries through the Kleene Star. Recent work studies
the complexity of Resilience for Regular Path Queries [8]. It would be
interesting to study the suite of RDM problems for Regular Path Queries,
or higher order logics, finding how the complexity landscape changes.
A more applied direction is to extend these problems to interpretable
Machine Learning pipelines and transformations.

Building a system for RDM problems. While the focus of this dissertation
is on theoretically and practically efficient algorithms for RDM problems,
building a large scale system that can solve RDM problems in practice is
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a natural next step. There are many research and engineering challenges
in building such a system, and such a system could learn from existing
knowledge in building query optimizers to similarly include various
heuristics, fast indexing, and other optimizations to make the system
efficient in practice. Another significant open question is designing a
user interface / query language for RDM problems that is intuitive and
easy to use for non-experts.

Minimal-sized Circuits. A natural question is to extend the results of
minimal factorization of provenance formulas to minimal-sized circuits.
Circuits are a strictly more succinct representation of provenance, and
have attracted considerable attention in the database theory community.
Some work has been done on the asymptotic size of factorized circuits [55],
however tight bounds remain unknown and the tractability of finding
instance optimal sized circuits remains open. A separate related question
is to find the minimum size formula / circuit for a given provenance
formula under different semirings (i.e., whether the semi-ring operations
are absorptive, idempotent, etc.)

Automatic Hardness Gadgets beyond Resilience. The automatic hard-
ness gadget-finder developed in this dissertation is a general method
that we believe can be extended beyond resilience problems. This is
due to the fact that neither the semantic specification of NP-Hardness
nor the Disjunctive Logic Program used to generate the reductions are
deeply tied to the resilience problem. Extending this method to other
RDM problems could naturally lead to many avenues of future research:
leading not only to new hardness results, but also better understanding
of linear reductions (which are the kinds of reductions that are found by
the gadget-finder) and semantic specifications of hardness gadgets for
various problems.

Fine Grained Complexity. This dissertation focused on “coarse-grained
instance optimality” as a bridge to true instance optimality, of which
few and far results are known. Recent foundational work in theoretical
computer science on fine-grained complexity [159] could be used to
further specify the complexity results shown in this dissertation. It
remains open if all tractable classes for resilience, for example, are within
the same fine-grained complexity class or not.
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A Nomenclature

The Notation Table (Table A.1) contains common nomenclature, and Query Table (Table A.2) lists example
queries used through the paper.

Table A.1: Notation Table

Symbol Definition
𝑄 Conjunctive query (CQ)
𝑅, 𝑆, 𝑇,𝑈 Relations
𝑥, 𝑦, 𝑧 Query variables
var(𝑅) the set of variables in atom / relation / formula 𝑋
at(𝑥 𝑗) set of atoms that contain variable 𝑥 𝑗
D Database Instance, i.e. a set of tables
𝑟𝑖 , 𝑠𝑖 , 𝑡𝑖 , 𝑢𝑖 tuple identifiers
𝑁 size of database |𝐷|
D |= 𝑄 Database D satisfies query 𝑄
D ̸|= 𝑄 Database Ddoes not satisfy query 𝑄
𝑄(𝐷) A view representing the evaluation of query 𝑄 on database 𝐷
|𝑄(D)| The number of tuples in the view 𝑄(D)
w Witness
𝑊 Set of witnesses 𝑊 = witnesses(𝑄, 𝐷)
𝑚 Number of atoms in a query Q
𝑘 Number of tables in Q (= 𝑚 in a self-join-free query)
Γ A set of tuples (usually to be deleted from a database i. e. a

contingency set)
𝐸 A set of exogenous tuples
x unordered set or ordered tuple
a/x substitute values a for variables x
Q[x] indicates that x represents the set of all existentially quantified

variables for Boolean query 𝑄
Q An ordered set of queries
𝑄 𝑖 The 𝑖-th query in Q

Γ A set of tuples (usually denoted a set of tuples to be deleted from
the database)

|∆𝑄(D, Γ)| |𝑄(D)|−|𝑄(D− Γ)|
𝑋[𝑣] A binary variable in an (Integer) Linear Program corresponding

to a variable 𝑣
𝑋[𝑣] A variable in an (Integer) Linear Program
S,T Set of start and terminal endpoints of a JP
DLP[RESIJP] A DLP to find ĲPs for queries
𝜑,𝜓 propositional formulas / expressions
VEO(𝑄) set of all legal VEOs for Q
mveo(𝑄) set of minimal VEOs for Q
𝑘 = |mveo(𝑄)| number of minimal VEOs
𝑣⟨w⟩ a VEO instance of VEO 𝑣 over witness w
var(𝑔𝑖) set of variables of a query 𝑞 or atom 𝑔𝑖
𝑃 query plan
P set of query plans
𝐹 flow graph
Z( . . . ) provenance join operator in prefix notation
𝜋x ,𝜋−y provenance project operators: onto x, or project y away

Continued on next page
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Table A.1 – continued from previous page
Symbol Definition
len Length of a Factorization
QPV Query Plan Variables of an ILP
PV Prefix Variables of an ILP
𝑞[. . .] a ILP decision query plan variable
𝑝[. . .] a ILP decision prefix variable
c weight (or cost) of variables in the ILP / nodes in the Factorization

Flow Graph
Ω An Ordering of mveo chosen for MFMC based algorithm
(𝑣1 , 𝑣2 , . . . , 𝑣𝑘) An ordered list of VEOs, VEOFFs or any other set of objects
HVar(𝑃) set of head variables of a query 𝑞 or a plan 𝑃
EVar(𝑞) set of existential variables: EVar(𝑞)=var(𝑞)−HVar(𝑞)
ℙ[𝜙] probability of a Boolean expression
∆ collection of sets of variables ∆ = (y1 , . . . , y𝑚)
𝑅

y𝑖

𝑖
dissociated relation 𝑅𝑖(x𝑖) on variables y𝑖 : 𝑅𝑖(x𝑖 , y𝑖)

𝑞∆ dissociated query

Table A.2: Example Queries

Query Definition
𝑄∞2 2-chain query 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧)
𝑄∞3 3-chain query 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑢)
𝑄∞4 4-chain query 𝑃(𝑢, 𝑥), 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑣)
𝑄∞5 5-chain query 𝐿(𝑎, 𝑢), 𝑃(𝑢, 𝑥), 𝑅(𝑥, 𝑦), 𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑣)
𝑄★

2 2-star query 𝑅(𝑥)𝑆(𝑦),𝑊(𝑥, 𝑦)
𝑄★

3 3-star query 𝑅(𝑥)𝑆(𝑦), 𝑇(𝑧)𝑊(𝑥, 𝑦, 𝑧)
𝑄△ Triangle query 𝑅(𝑥, 𝑦)𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥)
𝑄△

𝐴
Triangle Unary query 𝐴(𝑥)𝑅(𝑥, 𝑦)𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥)

𝑄△
𝐴𝐵

Triangle Binary query 𝐴(𝑥)𝑅(𝑥, 𝑦)𝑆(𝑦, 𝑧), 𝑇(𝑧, 𝑥), 𝐵(𝑧)
𝑄∞2−SJ Self-Join 2-chain query 𝑅(𝑥, 𝑦)𝑅(𝑦, 𝑧)
𝑄∼2−SJ Self-Join 2-confluence query 𝐴(𝑥)𝑅(𝑥, 𝑦)𝑆(𝑧, 𝑦), 𝐵(𝑧)
𝑄z6

SJ Self-Join z6 query 𝐴(𝑥)𝑅(𝑥, 𝑦)𝑅(𝑦, 𝑦), 𝑅(𝑦, 𝑧), 𝐶(𝑧)
𝑄◦6WE 6-cycle query with end points 𝐴(𝑥), 𝑅(𝑥, 𝑦), 𝐵(𝑦), 𝑆(𝑦, 𝑧), 𝐶(𝑧),

𝑇(𝑧, 𝑢) 𝐷(𝑢), 𝑈(𝑢, 𝑣), 𝐸(𝑣), 𝑉(𝑣, 𝑤), 𝐹(𝑤), 𝑊(𝑤, 𝑥)
𝑄△cod Co-dominated triangle query 𝐴(𝑤), 𝑅(𝑤, 𝑥, 𝑦), 𝑆(𝑤, 𝑦, 𝑧),

𝑇(𝑤, 𝑧, 𝑥)

Table A.3: Common Abbreviations

Term Full Form

ADP-SS Aggregated Deletion Propagation
AHG Automatic Hardness Gadget
CQ Conjunctive Query
DLP Disjunctive Logic Program
DP Deletion Propagation
DP-SS Deletion Propagation Source Side Effects
DP-VS Deletion Propagation View Side Effects
GDP Generalized Deletion Propagation
ĲP Independent Join Path
ILP Integer Linear Programming or Integer Linear Program, depend-

ing on context
Continued on next page
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Table A.3 – continued from previous page
Query Definition
LP Linear Program
MILP Mixed Integer Linear Program
minFACT Minimum Sized Factorization of Provenance Formulas
MFMC Max Flow Min Cut
RES Resilience
RSP Responsibility
RDM Reverse Data Management
SWP Smallest Witness Problem

142



B Disjunctive Logic Program for Automatic
Hardness Gadget-finder: An Example

We show an example DLP[RESIJP] for the 2-chain with self-join query 𝑄∞2−SJ :−𝑅(𝑥, 𝑦), 𝑅(𝑦, 𝑧). Here we are
able to show the code in its entirety for 𝑑 = 5 and endpoints {𝑅(1, 2)} and {𝑅(3, 4)}.
The formulation finds a hardness proof in just 0.3 seconds, running on a local Intel(R) Core(TM) i7-1065G7
CPU @ 1.30GHz with 8 cores.

1 % 1. Define Search Space
2 % There is one table R of arity 2 and d = 5. Thus we have 5^2 tuples in relation r.
3 r(1,1,1).
4 r(2,1,2).
5 r(3,1,3).
6 r(4,1,4).
7 r(5,1,5).
8 r(6,2,1).
9 r(7,2,2).

10 r(8,2,3).
11 r(9,2,4).
12 r(10,2,5).
13 r(11,3,1).
14 r(12,3,2).
15 r(13,3,3).
16 r(14,3,4).
17 r(15,3,5).
18 r(16,4,1).
19 r(17,4,2).
20 r(18,4,3).
21 r(19,4,4).
22 r(20,4,5).
23 r(21,5,1).
24 r(22,5,2).
25 r(23,5,3).
26 r(24,5,4).
27 r(25,5,5).
28

29 % 2. "Guess" an IJP
30 % For every tuple we define if it is in the IJP or not.
31 % We also calculate the witnesses and number of witnesses in the IJP
32 indb(r, Tid, 1) | indb(r, Tid, 0) :- r(Tid, _, _).
33 witness(X, Z, Y, T1, T2) :- r(T1, X, Y), r(T2, Y, Z), indb(r, T1, 1), indb(r, T2, 1).
34 number_of_witnesses(K) :- #count{ X, Z, Y, T1, T2 : witness(X, Z, Y, T1, T2) } = K.
35

36 % 3. JP Endpoint Condition
37 range_triangle(1..3).range_domain(1..5).
38 endpoint1_constant(1).
39 endpoint1_constant(2).
40 endpoint2_constant(3).
41 endpoint2_constant(4).
42 endpoint_1_witness(T1, T2) :- witness(X, Z, Y, T1, T2), indb(r, T1, 1), r(T1, X, Y), endpoint1_constant(X),

endpoint1_constant(Y).
43 endpoint_1_witness(T1, T2) :- witness(X, Z, Y, T1, T2), indb(r, T2, 1), r(T2, Y, Z), endpoint1_constant(Y),

endpoint1_constant(Z).
44 :- not #count{T1, T2: endpoint_1_witness(T1, T2)} = 1.
45 endpoint_2_witness(T1, T2) :- witness(X, Z, Y, T1, T2), indb(r, T1, 1), r(T1, X, Y), endpoint2_constant(X),

endpoint2_constant(Y).
46 endpoint_2_witness(T1, T2) :- witness(X, Z, Y, T1, T2), indb(r, T2, 1), r(T2, Y, Z), endpoint2_constant(Y),

endpoint2_constant(Z).
47 :- not #count{T1, T2: endpoint_2_witness(T1, T2)} = 1.
48 :- witness(X, Z, Y, T1, T2), endpoint1_constant(X), endpoint1_constant(Z), endpoint1_constant(Y).
49 :- witness(X, Z, Y, T1, T2), endpoint2_constant(X), endpoint2_constant(Z), endpoint2_constant(Y).
50

51 % 4. Calculate Resilience
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52

53 valid_res2(r, 2, 1).
54 invalid_res2(r, 2, 1).
55 valid_res3(r, 14, 1).
56 invalid_res3(r, 14, 1).
57 valid_res4(r, 2, 1).
58 invalid_res4(r, 2, 1).
59 valid_res4(r, 14, 1).
60 invalid_res4(r, 14, 1).
61

62 invalid_res1(r, Tid, 1) | invalid_res1(r, Tid, 0) :- r(Tid, _, _).
63 invalid_res2(r, Tid, 1) | invalid_res2(r, Tid, 0) :- r(Tid, _, _).
64 invalid_res3(r, Tid, 1) | invalid_res3(r, Tid, 0) :- r(Tid, _, _).
65 invalid_res4(r, Tid, 1) | invalid_res4(r, Tid, 0) :- r(Tid, _, _).
66 valid_res1(r, Tid, 1) | valid_res1(r, Tid, 0) :- r(Tid, _, _).
67 valid_res2(r, Tid, 1) | valid_res2(r, Tid, 0) :- r(Tid, _, _).
68 valid_res3(r, Tid, 1) | valid_res3(r, Tid, 0) :- r(Tid, _, _).
69 valid_res4(r, Tid, 1) | valid_res4(r, Tid, 0) :- r(Tid, _, _).
70

71

72 invalid_resilience1 :- witness(X, Z, Y, T1, T2), invalid_res1(r, T1, 0), invalid_res1(r, T2, 0).
73 invalid_resilience1 :- #count{Table, Tid: invalid_res1(Table, Tid, 1)} >= K, res(K).
74 invalid_resilience2 :- witness(X, Z, Y, T1, T2), invalid_res2(r, T1, 0), invalid_res2(r, T2, 0).
75 invalid_resilience2 :- #count{Table, Tid: invalid_res2(Table, Tid, 1)} >= K, res(K).
76 invalid_resilience3 :- witness(X, Z, Y, T1, T2), invalid_res3(r, T1, 0), invalid_res3(r, T2, 0).
77 invalid_resilience3 :- #count{Table, Tid: invalid_res3(Table, Tid, 1)} >= K, res(K).
78 invalid_resilience4 :- witness(X, Z, Y, T1, T2), invalid_res4(r, T1, 0), invalid_res4(r, T2, 0).
79 invalid_resilience4 :- #count{Table, Tid: invalid_res4(Table, Tid, 1)} >= K+1, res(K).
80

81 % Here we are ‘‘saturating’’ the solution
82 invalid_res1(r, Tid, 0) :- invalid_resilience1, r(Tid, _, _).
83 invalid_res1(r, Tid, 1) :- invalid_resilience1, r(Tid, _, _).
84

85 invalid_res2(r, Tid, 0) :- invalid_resilience2, r(Tid, _, _).
86 invalid_res2(r, Tid, 1) :- invalid_resilience2, r(Tid, _, _).
87

88 invalid_res3(r, Tid, 0) :- invalid_resilience3, r(Tid, _, _).
89 invalid_res3(r, Tid, 1) :- invalid_resilience3, r(Tid, _, _).
90

91 invalid_res4(r, Tid, 0) :- invalid_resilience4, r(Tid, _, _).
92 invalid_res4(r, Tid, 1) :- invalid_resilience4, r(Tid, _, _).
93

94 :- not invalid_resilience1.
95 :- not invalid_resilience2.
96 :- not invalid_resilience3.
97 :- not invalid_resilience4.
98

99 % 5. Check for the OR Property
100

101 :- witness(X, Z, Y, T1, T2), valid_res1(r, T1, 0), valid_res1(r, T2, 0).
102 res(K) :- #count{Table, Tid: valid_res1(Table, Tid, 1)} = K.
103 :- witness(X, Z, Y, T1, T2), valid_res2(r, T1, 0), valid_res2(r, T2, 0).
104 :- not #count{Table, Tid: valid_res2(Table, Tid, 1)} = K, res(K).
105 :- witness(X, Z, Y, T1, T2), valid_res3(r, T1, 0), valid_res3(r, T2, 0).
106 :- not #count{Table, Tid: valid_res3(Table, Tid, 1)} = K, res(K).
107 :- witness(X, Z, Y, T1, T2), valid_res4(r, T1, 0), valid_res4(r, T2, 0).
108 :- not #count{Table, Tid: valid_res4(Table, Tid, 1)} = K+1, res(K).
109

110 % 6. Check for non-leaking composition
111

112 isomorph_map(C, 1, C) :- endpoint1_constant(C), range_triangle(I). % endpoint1 gets mapped to itself for edge
1

113 isomorph_map(C, 2, X) :- endpoint1_constant(C), range_triangle(I), X = C + 2. %endpoint1 gets mapped to 2 for
edge 2 - add endpoint arity

114 isomorph_map(C, 3, C) :- endpoint1_constant(C), range_triangle(I). %endpoint1 gets mapped to itself for edge 3
115 isomorph_map(C, 1, C) :- endpoint2_constant(C), range_triangle(I). %endpoint2 gets mapped to itself for edge 1
116 isomorph_map(C, 2, X) :- endpoint2_constant(C), range_triangle(I), X = C + 2. %endpoint2 gets mapped to 3 for

edge 2
117 isomorph_map(C, 3, X) :- endpoint2_constant(C), range_triangle(I), X = C + 2. %endpoint2 gets mapped to 3 for

edge 3
118 isomorph_map(C, I, X) :- range_triangle(I), range_domain(C), X = C+(5+1)*I, not endpoint1_constant(C), not

endpoint2_constant(C).
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119

120 ijp_isomorph_1_r(TID, VI0,VI1) :- indb(r, TID, 1), r(TID, V0,V1), isomorph_map(V0,1,VI0), isomorph_map(V1,1,VI1
).

121 ijp_isomorph_2_r(TID, VI0,VI1) :- indb(r, TID, 1), r(TID, V0,V1), isomorph_map(V0,2,VI0), isomorph_map(V1,2,VI1
).

122 ijp_isomorph_3_r(TID, VI0,VI1) :- indb(r, TID, 1), r(TID, V0,V1), isomorph_map(V0,3,VI0), isomorph_map(V1,3,VI1
).

123

124 ijp_isomorph_triangle_r(TID, V0, V1) :- ijp_isomorph_1_r(TID, V0, V1).
125 ijp_isomorph_triangle_r(TID, V0, V1) :- ijp_isomorph_2_r(TID, V0, V1).
126 ijp_isomorph_triangle_r(TID, V0, V1) :- ijp_isomorph_3_r(TID, V0, V1).
127 ijp_triangle_witness(X, Z, Y) :- ijp_isomorph_triangle_r(T1, X, Y), ijp_isomorph_triangle_r(T2, Y, Z).
128 :- number_of_witnesses(K), not #count{ X, Z, Y : ijp_triangle_witness(X, Z, Y) }= 3*K.
129

130 % 7. (Optional) Minimize the size of the IJP
131 :~ witness(Z, Y, X, T1, T2). [1@1, Z, Y, X]
132

133

134 #show.
135 #show number_of_witnesses(K) : number_of_witnesses(K).
136 #show witness(X, Z, Y) : witness(X, Z, Y, T1, T2).
137 #show res(K) : res(K).

The code gives the following output, finding an ĲP with 3 witnesses:

1 clingo version 5.6.2
2 Reading from ...gen_asp_scripts\ijp_expt_cases-1003.dl
3 Solving...
4 Progression : [1;inf]
5 Progression : [2;inf]
6 Answer: 1
7 res(3) witness(5,2,1) witness(4,3,5) witness(3,5,2) witness(3,5,5) witness(5,5,2) witness(5,5,5)

number_of_witnesses(6)
8 Optimization: 6
9 Answer: 2

10 res(2) witness(5,2,1) witness(4,3,5) witness(3,5,2) number_of_witnesses(3)
11 Optimization: 3
12 OPTIMUM FOUND
13

14 Models : 2
15 Optimum : yes
16 Optimization : 3
17 Calls : 1
18 Time : 0.392s (Solving: 0.18s 1st Model: 0.11s Unsat: 0.05s)
19 CPU Time : 1.578s
20 Threads : 8 (Winner: 4)

The ĲP can then be automatically visualized as in Figure B.1.

Figure B.1: Automatically generated ĲP for 𝑄∞2−SJ
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