

DΛTΛLΛB

A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations

Neha Makhija

Northeastern University (Joint work with Wolfgang Gatterbauer)

SIGMOD 2024, Santiago

https://northeastern-datalab.github.io/unified-reverse-data-management/

Traditional Data Management (before query optimizers)

Many types of user questions!

Different questions → Different Optimal Algorithms

Traditional Data Management

Many types of user questions!

Different questions → Query Optimizer solves everything optimally

 \rightarrow Choose between different access paths

Reverse Data Management

Reverse user questions: Why, how to, what if...

Reverse Data Management

Reverse Data Management

Meliou, Gatterbauer, Suciu. Reverse Data Management, VLDB 2011 https://doi.org/10.14778/3402755.3402803

Unified Reverse Data Management: Our Vision

Reverse user questions: Why, how to, what if...

Reverse Data Management: Our Focus

Reverse Data Management: Our Focus

Reverse Data Management: Resilience

- Diagnose Points of Failure
- Equivalent to Deletion Propagation with Source Side-Effects

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, PVLDB 2015 https://dl.acm.org/doi/10.14778/2850583.2850592 Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with ILP and LP. SIGMOD24, Santiago. https://dl.acm.org/doi/10.14778/2850583.2850592

Reverse Data Management: Resilience

- Halpern-Pearl Framework of Counterfactual Causality adapted to Conjunctive Queries

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, PVLDB 2015 https://dl.acm.org/doi/10.14778/2850583.2850592 Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with ILP and LP. SIGMOD24, Santiago. https://dl.acm.org/doi/10.14778/2850583.2850592

- Unified Reverse Data Management Framework
 - Example: Resilience
- Insight #1: How to build **Unified Algorithms**
- Insight #2: How to build **Automatic Hardness Provers**
- What else is in the paper?
- Takeaways + Open Questions

Sees(person, movie) Buys(person, item) Featured-In(item, movie)

Query:- What person sees a movie and buys an item featured in the movie? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Query:- What person sees a movie and buys an item featured in the movie? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Query:- What person sees a movie and buys an item featured in the movie? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Query:- What person sees a movie and buys an item featured in the movie? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Recall: Resilience = What minimal change would it take to delete the output?"

Query:- What person sees a movie and buys an item featured in the movie? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Recall: Resilience = What minimal change would it take to delete the output?"

Query:- What person sees a movie and buys an item featured in the movie? Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

Recall: Resilience = What minimal change would it take to delete the output?"

Q(person, movie, item):- Sees(person, movie), Buys(person, item), Featured-In(item, movie)

This is a NP-Hard Problem

Optimal algorithm is exponential!
 (Unless P=NP)

Minor modification makes query PTIME

Minor modification makes query PTIME

But only under set semantics!

If Input uses Bag semantics:

• Optimal algorithm is exponential! (Unless P=NP)

Unified approach is *automatically* optimal

- For all known queries
- For bag / set semantics

- Unified Reverse Data Management Framework
- Insight #1: How to build **Unified Algorithms**
- Insight #2: How to build Automatic Hardness Provers
- What else is in the paper?
- Takeaways + Open Questions

What is a Unified Algorithm?

- 1. Unified Across Complexity (Easy or Hard)
- Algorithm that can solve PTIME and NP-C problems
- Guaranteed exact PTIME termination for all known tractable cases
- 2. Unified Across Settings
- Set + Bag Semantics
- All Conjunctive Queries (including all self-joins)
- Can take advantage of *unspecified* Functional Dependencies

Orange keywords = contrast from previous work

Freire, Gatterbauer, Immerman, Meliou. The complexity of resilience and responsibility for self-join-free conjunctive queries, PVLDB 2015 https://dl.acm.org/doi/10.14778/2850583.2850592 Freire, Gatterbauer, Immerman, Meliou. New results for the complexity of resilience for binary conjunctive queries with self-joins, PODS 2020 https://doi.org/10.14778/2850583.2850592 Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with ILP and LP. SIGMOD24, Santiago. https://northeastern-datalab.github.io/unified-reverse-data-management/

Detour: Integer Linear Programs

Highly Optimized in Practice!

Detour: Integer Linear Programs

Linear Program (LP) $\min w^T x$ $s.t.Ax \leq b$ $x \in [0, 1]$ 1 0 PTIME

Natural Lower Bound

Detour: Integer Linear Programs

Insight: If LP=ILP, then a solution can be recovered efficiently!

Based on a description of the inner workings of Gurobi (<u>https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/</u>) Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with ILP and LP. SIGMOD24, Santiago. <u>https://northeastern-datalab.github.io/unified-reverse-data-management/</u>

Resilience as an Integer Linear Program (ILP)

 Q_{Δ} Example:

Person	Movie	ltem	
Alice	E.T.	Reeses	$s_1b_1f_2$
Bob	E.T.	Reeses	$s_2b_2f_2$

\forall tuples t: $x[t] \in \{0,1\}$

When does LP = ILP?

Theorem.

For all known PTIME cases of Resilience, LP=ILP

Alexander Schrijver **Combinatorial Optimization** Polyhedra and Efficiency

Volume A-C

Our PTIME constraint matrixes need not be balanced or Totally Unimodular

The PTIME cases go beyond these known criteria!

83	Bala	nced and unimedular hypergraphs
	83.1	Balanced hypergrads 1439
	83.2	Characterization of alanced hypergraphs
		83.2a Totally balanced matrices
		83.2b Examples of balanced hypergraphs
		83.2c Balanced $0, \pm 1$ matrices
	83.3	Unimodular hyperrophs
		83.3a Further notes

Show correspondence to a flow graph as a criterion for when LP=ILP

Unified Approach for Resilience

Typical Goal: Find algorithm for easy cases

Our Goal: Just prove case is easy

Unified Approach for Causal Responsibility

Typical Goal: Find algorithm for easy cases

Our Goal: Just prove case is easy

Experiments: Unified Resilience ILP

- Unified Reverse Data Management Framework
- Insight #1: How to build **Unified Algorithms**
- Insight #2: How to build **Automatic Hardness Provers**
- What else is in the paper?
- Takeaways + Open Questions

35

How to prove that exponential complexity is optimal (best we can do)?

5 New Hardness Gadgets

- Using the Automatic Hardness Finder, we proved 5 queries hard (out of 7 \bullet previously open from Freire+20) $q_{3perm-R}^{S_{xy}B}$:- S(x,y),R(x,y),B(y),R(y,z),R(z,y) $q_{3cc}^{S}:-R(x,y),R(y,z),R(w,z),S(w,z)$ • A(5 R(5,7) R(6,6) • R(1,6) 1,2)A(1) **B**(5,6) • R(6,2) R(6.4) • S(3,4) • R(1. (1.2)• S(2,3 • R(3,4) • **B**(5,4) 🕤 🖻 🖉 🖉 3,,3)**, e R**(7,3) • R(4.1) • R(1,4) • \$(1,4) $z_6: - A(x), R(x, y), R(y, y), R(y, z), C(z)$ $(\bullet R(4.3))$ • R(3,2) $q_{3nerm-R}^{S_{xy}C}:=S(x,y),R(x,y),R(y,z),R(z,y),C(z)$ $q_{3\text{perm-R}}^{AS_{xy}}:= A(x), S(x,y), R(x,y), R(y,z), R(z,y)$
- Can recover all previous hardness results + find new ones!

How to Build the Automatic Hardness Finder?

- 1. Declarative Program
- OO Automatic Hardness Finder
- 2. Semantic Specification of "Hardness"
 - We show 5 properties that are sufficient to show hardness
 - These properties can be easily tested
 - 3. Solve NP-Hard problems as a sub-routine
 - Expressivity used: Σ_2^P
 - Disjunctive Logic Programs

- Unified Reverse Data Management Framework
- Insight #1: How to build **Unified Algorithms**
- Insight #2: How to build **Automatic Hardness Provers**
- What else is in the paper?
- Takeaways + Open Questions

What else is in the paper?

- Unified Algorithms for Resilience and Casual Responsibility
- Automatic Hardness Finder

> In this talk

- Complexity Dichotomy for Resilience and Causal Responsibility under Bag semantics
- More tractable cases:
 - Read-Once Instances, Functional Dependencies...
- Approximation algorithms
- Experimental Verification

Takeaways

- One unified algorithm, only need to prove PTIME
- One unified hardness criterion
 - Automatic search

Open Problems

- Which RDM problems can we solve with this unified approach?
 - Resilience
 - Minimal Factorization of Provenance of CQs (at PODS 5pm tomorrow!)
 - Causal Responsibility
 - Claim: many more: Deletion Propogation, Algorithmic Fairness, ...
- Uncovering more complexity results across different problems
- Build a "Reverse Query Optimizer"

Takeaways

Many more details, proofs, experiments, approximations:

- <u>https://northeastern-datalab.github.io/unified-reverse-data-management/</u>
- Makhija, Gatterbauer. A Unified Approach for Resilience and Causal Responsibility with Integer Linear Programming (ILP) and LP Relaxations, SIGMOD 2024
- Makhija, Gatterbauer. Minimally Factorizing the Provenance of Self-join Free Conjunctive Queries, PODS 2024

Appendix

What is an Independent Join Path?

Database under query Q, with endpoints, with 5 *testable* properties:

- 1. Data hypergraph is connected
- 2. Database is reduced

3. Endpoints are "valid"

Data Hypergraph

- 4. OR property </br>

 "Key" properties:

 Semantically defined
- 5. Composability 🖍
- I will just show intuition

Key Property #2: Composability of IJPs

Our Goal

Using the complete criterion for IJP, can we build a principled way to find IJPs?

Using the complete criterion for IJP, we can build a principled way to find IJPs

NP

Using the complete criterion for IJP, we can build a principled way to find IJPs

s_a b_{ab1}

 $s_a b_{ab_1}$

s_a b_{ab1}

 Σ_2^P

NP

Using the complete criterion for IJP, we can build a principled way to find IJPs

